This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of all Eulerian paths on an arbitrary graph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-eupth | |- EulerPaths = ( g e. _V |-> { <. f , p >. | ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ceupth | |- EulerPaths |
|
| 1 | vg | |- g |
|
| 2 | cvv | |- _V |
|
| 3 | vf | |- f |
|
| 4 | vp | |- p |
|
| 5 | 3 | cv | |- f |
| 6 | ctrls | |- Trails |
|
| 7 | 1 | cv | |- g |
| 8 | 7 6 | cfv | |- ( Trails ` g ) |
| 9 | 4 | cv | |- p |
| 10 | 5 9 8 | wbr | |- f ( Trails ` g ) p |
| 11 | cc0 | |- 0 |
|
| 12 | cfzo | |- ..^ |
|
| 13 | chash | |- # |
|
| 14 | 5 13 | cfv | |- ( # ` f ) |
| 15 | 11 14 12 | co | |- ( 0 ..^ ( # ` f ) ) |
| 16 | ciedg | |- iEdg |
|
| 17 | 7 16 | cfv | |- ( iEdg ` g ) |
| 18 | 17 | cdm | |- dom ( iEdg ` g ) |
| 19 | 15 18 5 | wfo | |- f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) |
| 20 | 10 19 | wa | |- ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) |
| 21 | 20 3 4 | copab | |- { <. f , p >. | ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) } |
| 22 | 1 2 21 | cmpt | |- ( g e. _V |-> { <. f , p >. | ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) } ) |
| 23 | 0 22 | wceq | |- EulerPaths = ( g e. _V |-> { <. f , p >. | ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) } ) |