This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any graph with an Eulerian path is of finite size, i.e. with a finite number of edges. (Contributed by Mario Carneiro, 7-Apr-2015) (Revised by AV, 18-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eupths.i | |- I = ( iEdg ` G ) |
|
| Assertion | eupthfi | |- ( F ( EulerPaths ` G ) P -> dom I e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupths.i | |- I = ( iEdg ` G ) |
|
| 2 | fzofi | |- ( 0 ..^ ( # ` F ) ) e. Fin |
|
| 3 | 1 | eupthf1o | |- ( F ( EulerPaths ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) |
| 4 | ovex | |- ( 0 ..^ ( # ` F ) ) e. _V |
|
| 5 | 4 | f1oen | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I -> ( 0 ..^ ( # ` F ) ) ~~ dom I ) |
| 6 | ensym | |- ( ( 0 ..^ ( # ` F ) ) ~~ dom I -> dom I ~~ ( 0 ..^ ( # ` F ) ) ) |
|
| 7 | 3 5 6 | 3syl | |- ( F ( EulerPaths ` G ) P -> dom I ~~ ( 0 ..^ ( # ` F ) ) ) |
| 8 | enfii | |- ( ( ( 0 ..^ ( # ` F ) ) e. Fin /\ dom I ~~ ( 0 ..^ ( # ` F ) ) ) -> dom I e. Fin ) |
|
| 9 | 2 7 8 | sylancr | |- ( F ( EulerPaths ` G ) P -> dom I e. Fin ) |