This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any graph with an Eulerian path is of finite size, i.e. with a finite number of edges. (Contributed by Mario Carneiro, 7-Apr-2015) (Revised by AV, 18-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eupths.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | eupthfi | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → dom 𝐼 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupths.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | fzofi | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∈ Fin | |
| 3 | 1 | eupthf1o | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼 ) |
| 4 | ovex | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∈ V | |
| 5 | 4 | f1oen | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ≈ dom 𝐼 ) |
| 6 | ensym | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ≈ dom 𝐼 → dom 𝐼 ≈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 7 | 3 5 6 | 3syl | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → dom 𝐼 ≈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 8 | enfii | ⊢ ( ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∈ Fin ∧ dom 𝐼 ≈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → dom 𝐼 ∈ Fin ) | |
| 9 | 2 7 8 | sylancr | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → dom 𝐼 ∈ Fin ) |