This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The N -th edge in an eulerian path is the edge having P ( N ) and P ( N + 1 ) as endpoints . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eupths.i | |- I = ( iEdg ` G ) |
|
| Assertion | eupthseg | |- ( ( F ( EulerPaths ` G ) P /\ N e. ( 0 ..^ ( # ` F ) ) ) -> { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupths.i | |- I = ( iEdg ` G ) |
|
| 2 | 1 | eupthi | |- ( F ( EulerPaths ` G ) P -> ( F ( Walks ` G ) P /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) ) |
| 3 | 2 | simpld | |- ( F ( EulerPaths ` G ) P -> F ( Walks ` G ) P ) |
| 4 | 1 | wlkvtxeledg | |- ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
| 5 | fveq2 | |- ( k = N -> ( P ` k ) = ( P ` N ) ) |
|
| 6 | fvoveq1 | |- ( k = N -> ( P ` ( k + 1 ) ) = ( P ` ( N + 1 ) ) ) |
|
| 7 | 5 6 | preq12d | |- ( k = N -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |
| 8 | 2fveq3 | |- ( k = N -> ( I ` ( F ` k ) ) = ( I ` ( F ` N ) ) ) |
|
| 9 | 7 8 | sseq12d | |- ( k = N -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 10 | 9 | rspccv | |- ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) -> ( N e. ( 0 ..^ ( # ` F ) ) -> { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 11 | 3 4 10 | 3syl | |- ( F ( EulerPaths ` G ) P -> ( N e. ( 0 ..^ ( # ` F ) ) -> { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 12 | 11 | imp | |- ( ( F ( EulerPaths ` G ) P /\ N e. ( 0 ..^ ( # ` F ) ) ) -> { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) |