This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prove existential uniqueness for an ordered triple. (Contributed by Mario Carneiro, 20-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | euotd.1 | |- ( ph -> A e. U ) |
|
| euotd.2 | |- ( ph -> B e. V ) |
||
| euotd.3 | |- ( ph -> C e. W ) |
||
| euotd.4 | |- ( ph -> ( ps <-> ( a = A /\ b = B /\ c = C ) ) ) |
||
| Assertion | euotd | |- ( ph -> E! x E. a E. b E. c ( x = <. a , b , c >. /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euotd.1 | |- ( ph -> A e. U ) |
|
| 2 | euotd.2 | |- ( ph -> B e. V ) |
|
| 3 | euotd.3 | |- ( ph -> C e. W ) |
|
| 4 | euotd.4 | |- ( ph -> ( ps <-> ( a = A /\ b = B /\ c = C ) ) ) |
|
| 5 | 4 | biimpa | |- ( ( ph /\ ps ) -> ( a = A /\ b = B /\ c = C ) ) |
| 6 | vex | |- a e. _V |
|
| 7 | vex | |- b e. _V |
|
| 8 | vex | |- c e. _V |
|
| 9 | 6 7 8 | otth | |- ( <. a , b , c >. = <. A , B , C >. <-> ( a = A /\ b = B /\ c = C ) ) |
| 10 | 5 9 | sylibr | |- ( ( ph /\ ps ) -> <. a , b , c >. = <. A , B , C >. ) |
| 11 | 10 | eqeq2d | |- ( ( ph /\ ps ) -> ( x = <. a , b , c >. <-> x = <. A , B , C >. ) ) |
| 12 | 11 | biimpd | |- ( ( ph /\ ps ) -> ( x = <. a , b , c >. -> x = <. A , B , C >. ) ) |
| 13 | 12 | impancom | |- ( ( ph /\ x = <. a , b , c >. ) -> ( ps -> x = <. A , B , C >. ) ) |
| 14 | 13 | expimpd | |- ( ph -> ( ( x = <. a , b , c >. /\ ps ) -> x = <. A , B , C >. ) ) |
| 15 | 14 | exlimdv | |- ( ph -> ( E. c ( x = <. a , b , c >. /\ ps ) -> x = <. A , B , C >. ) ) |
| 16 | 15 | exlimdvv | |- ( ph -> ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) -> x = <. A , B , C >. ) ) |
| 17 | tru | |- T. |
|
| 18 | 2 | adantr | |- ( ( ph /\ a = A ) -> B e. V ) |
| 19 | 3 | ad2antrr | |- ( ( ( ph /\ a = A ) /\ b = B ) -> C e. W ) |
| 20 | simpr | |- ( ( ph /\ ( a = A /\ b = B /\ c = C ) ) -> ( a = A /\ b = B /\ c = C ) ) |
|
| 21 | 20 9 | sylibr | |- ( ( ph /\ ( a = A /\ b = B /\ c = C ) ) -> <. a , b , c >. = <. A , B , C >. ) |
| 22 | 21 | eqcomd | |- ( ( ph /\ ( a = A /\ b = B /\ c = C ) ) -> <. A , B , C >. = <. a , b , c >. ) |
| 23 | 4 | biimpar | |- ( ( ph /\ ( a = A /\ b = B /\ c = C ) ) -> ps ) |
| 24 | 22 23 | jca | |- ( ( ph /\ ( a = A /\ b = B /\ c = C ) ) -> ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) |
| 25 | trud | |- ( ( ph /\ ( a = A /\ b = B /\ c = C ) ) -> T. ) |
|
| 26 | 24 25 | 2thd | |- ( ( ph /\ ( a = A /\ b = B /\ c = C ) ) -> ( ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> T. ) ) |
| 27 | 26 | 3anassrs | |- ( ( ( ( ph /\ a = A ) /\ b = B ) /\ c = C ) -> ( ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> T. ) ) |
| 28 | 19 27 | sbcied | |- ( ( ( ph /\ a = A ) /\ b = B ) -> ( [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> T. ) ) |
| 29 | 18 28 | sbcied | |- ( ( ph /\ a = A ) -> ( [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> T. ) ) |
| 30 | 1 29 | sbcied | |- ( ph -> ( [. A / a ]. [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> T. ) ) |
| 31 | 17 30 | mpbiri | |- ( ph -> [. A / a ]. [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) |
| 32 | 31 | spesbcd | |- ( ph -> E. a [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) |
| 33 | nfcv | |- F/_ b B |
|
| 34 | nfsbc1v | |- F/ b [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) |
|
| 35 | 34 | nfex | |- F/ b E. a [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) |
| 36 | sbceq1a | |- ( b = B -> ( [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) ) |
|
| 37 | 36 | exbidv | |- ( b = B -> ( E. a [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> E. a [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) ) |
| 38 | 33 35 37 | spcegf | |- ( B e. V -> ( E. a [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) -> E. b E. a [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) ) |
| 39 | 2 32 38 | sylc | |- ( ph -> E. b E. a [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) |
| 40 | nfcv | |- F/_ c C |
|
| 41 | nfsbc1v | |- F/ c [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) |
|
| 42 | 41 | nfex | |- F/ c E. a [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) |
| 43 | 42 | nfex | |- F/ c E. b E. a [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) |
| 44 | sbceq1a | |- ( c = C -> ( ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) ) |
|
| 45 | 44 | 2exbidv | |- ( c = C -> ( E. b E. a ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> E. b E. a [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) ) |
| 46 | 40 43 45 | spcegf | |- ( C e. W -> ( E. b E. a [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) -> E. c E. b E. a ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) ) |
| 47 | 3 39 46 | sylc | |- ( ph -> E. c E. b E. a ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) |
| 48 | excom13 | |- ( E. c E. b E. a ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> E. a E. b E. c ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) |
|
| 49 | 47 48 | sylib | |- ( ph -> E. a E. b E. c ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) |
| 50 | eqeq1 | |- ( x = <. A , B , C >. -> ( x = <. a , b , c >. <-> <. A , B , C >. = <. a , b , c >. ) ) |
|
| 51 | 50 | anbi1d | |- ( x = <. A , B , C >. -> ( ( x = <. a , b , c >. /\ ps ) <-> ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) ) |
| 52 | 51 | 3exbidv | |- ( x = <. A , B , C >. -> ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> E. a E. b E. c ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) ) |
| 53 | 49 52 | syl5ibrcom | |- ( ph -> ( x = <. A , B , C >. -> E. a E. b E. c ( x = <. a , b , c >. /\ ps ) ) ) |
| 54 | 16 53 | impbid | |- ( ph -> ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = <. A , B , C >. ) ) |
| 55 | 54 | alrimiv | |- ( ph -> A. x ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = <. A , B , C >. ) ) |
| 56 | otex | |- <. A , B , C >. e. _V |
|
| 57 | eqeq2 | |- ( y = <. A , B , C >. -> ( x = y <-> x = <. A , B , C >. ) ) |
|
| 58 | 57 | bibi2d | |- ( y = <. A , B , C >. -> ( ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = y ) <-> ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = <. A , B , C >. ) ) ) |
| 59 | 58 | albidv | |- ( y = <. A , B , C >. -> ( A. x ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = y ) <-> A. x ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = <. A , B , C >. ) ) ) |
| 60 | 56 59 | spcev | |- ( A. x ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = <. A , B , C >. ) -> E. y A. x ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = y ) ) |
| 61 | 55 60 | syl | |- ( ph -> E. y A. x ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = y ) ) |
| 62 | eu6 | |- ( E! x E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> E. y A. x ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = y ) ) |
|
| 63 | 61 62 | sylibr | |- ( ph -> E! x E. a E. b E. c ( x = <. a , b , c >. /\ ps ) ) |