This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality has existential uniqueness (split into 2 cases). (Contributed by NM, 5-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eueq2.1 | |- A e. _V |
|
| eueq2.2 | |- B e. _V |
||
| Assertion | eueq2 | |- E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eueq2.1 | |- A e. _V |
|
| 2 | eueq2.2 | |- B e. _V |
|
| 3 | notnot | |- ( ph -> -. -. ph ) |
|
| 4 | 1 | eueqi | |- E! x x = A |
| 5 | euanv | |- ( E! x ( ph /\ x = A ) <-> ( ph /\ E! x x = A ) ) |
|
| 6 | 5 | biimpri | |- ( ( ph /\ E! x x = A ) -> E! x ( ph /\ x = A ) ) |
| 7 | 4 6 | mpan2 | |- ( ph -> E! x ( ph /\ x = A ) ) |
| 8 | euorv | |- ( ( -. -. ph /\ E! x ( ph /\ x = A ) ) -> E! x ( -. ph \/ ( ph /\ x = A ) ) ) |
|
| 9 | 3 7 8 | syl2anc | |- ( ph -> E! x ( -. ph \/ ( ph /\ x = A ) ) ) |
| 10 | orcom | |- ( ( -. ph \/ ( ph /\ x = A ) ) <-> ( ( ph /\ x = A ) \/ -. ph ) ) |
|
| 11 | 3 | bianfd | |- ( ph -> ( -. ph <-> ( -. ph /\ x = B ) ) ) |
| 12 | 11 | orbi2d | |- ( ph -> ( ( ( ph /\ x = A ) \/ -. ph ) <-> ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) |
| 13 | 10 12 | bitrid | |- ( ph -> ( ( -. ph \/ ( ph /\ x = A ) ) <-> ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) |
| 14 | 13 | eubidv | |- ( ph -> ( E! x ( -. ph \/ ( ph /\ x = A ) ) <-> E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) |
| 15 | 9 14 | mpbid | |- ( ph -> E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) |
| 16 | 2 | eueqi | |- E! x x = B |
| 17 | euanv | |- ( E! x ( -. ph /\ x = B ) <-> ( -. ph /\ E! x x = B ) ) |
|
| 18 | 17 | biimpri | |- ( ( -. ph /\ E! x x = B ) -> E! x ( -. ph /\ x = B ) ) |
| 19 | 16 18 | mpan2 | |- ( -. ph -> E! x ( -. ph /\ x = B ) ) |
| 20 | euorv | |- ( ( -. ph /\ E! x ( -. ph /\ x = B ) ) -> E! x ( ph \/ ( -. ph /\ x = B ) ) ) |
|
| 21 | 19 20 | mpdan | |- ( -. ph -> E! x ( ph \/ ( -. ph /\ x = B ) ) ) |
| 22 | id | |- ( -. ph -> -. ph ) |
|
| 23 | 22 | bianfd | |- ( -. ph -> ( ph <-> ( ph /\ x = A ) ) ) |
| 24 | 23 | orbi1d | |- ( -. ph -> ( ( ph \/ ( -. ph /\ x = B ) ) <-> ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) |
| 25 | 24 | eubidv | |- ( -. ph -> ( E! x ( ph \/ ( -. ph /\ x = B ) ) <-> E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) ) |
| 26 | 21 25 | mpbid | |- ( -. ph -> E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) ) |
| 27 | 15 26 | pm2.61i | |- E! x ( ( ph /\ x = A ) \/ ( -. ph /\ x = B ) ) |