This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality has existential uniqueness (split into 2 cases). (Contributed by NM, 5-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eueq2.1 | ⊢ 𝐴 ∈ V | |
| eueq2.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | eueq2 | ⊢ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eueq2.1 | ⊢ 𝐴 ∈ V | |
| 2 | eueq2.2 | ⊢ 𝐵 ∈ V | |
| 3 | notnot | ⊢ ( 𝜑 → ¬ ¬ 𝜑 ) | |
| 4 | 1 | eueqi | ⊢ ∃! 𝑥 𝑥 = 𝐴 |
| 5 | euanv | ⊢ ( ∃! 𝑥 ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ( 𝜑 ∧ ∃! 𝑥 𝑥 = 𝐴 ) ) | |
| 6 | 5 | biimpri | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 𝑥 = 𝐴 ) → ∃! 𝑥 ( 𝜑 ∧ 𝑥 = 𝐴 ) ) |
| 7 | 4 6 | mpan2 | ⊢ ( 𝜑 → ∃! 𝑥 ( 𝜑 ∧ 𝑥 = 𝐴 ) ) |
| 8 | euorv | ⊢ ( ( ¬ ¬ 𝜑 ∧ ∃! 𝑥 ( 𝜑 ∧ 𝑥 = 𝐴 ) ) → ∃! 𝑥 ( ¬ 𝜑 ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) | |
| 9 | 3 7 8 | syl2anc | ⊢ ( 𝜑 → ∃! 𝑥 ( ¬ 𝜑 ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
| 10 | orcom | ⊢ ( ( ¬ 𝜑 ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ¬ 𝜑 ) ) | |
| 11 | 3 | bianfd | ⊢ ( 𝜑 → ( ¬ 𝜑 ↔ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
| 12 | 11 | orbi2d | ⊢ ( 𝜑 → ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ¬ 𝜑 ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) ) |
| 13 | 10 12 | bitrid | ⊢ ( 𝜑 → ( ( ¬ 𝜑 ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) ) |
| 14 | 13 | eubidv | ⊢ ( 𝜑 → ( ∃! 𝑥 ( ¬ 𝜑 ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ↔ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) ) |
| 15 | 9 14 | mpbid | ⊢ ( 𝜑 → ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
| 16 | 2 | eueqi | ⊢ ∃! 𝑥 𝑥 = 𝐵 |
| 17 | euanv | ⊢ ( ∃! 𝑥 ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ( ¬ 𝜑 ∧ ∃! 𝑥 𝑥 = 𝐵 ) ) | |
| 18 | 17 | biimpri | ⊢ ( ( ¬ 𝜑 ∧ ∃! 𝑥 𝑥 = 𝐵 ) → ∃! 𝑥 ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) |
| 19 | 16 18 | mpan2 | ⊢ ( ¬ 𝜑 → ∃! 𝑥 ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) |
| 20 | euorv | ⊢ ( ( ¬ 𝜑 ∧ ∃! 𝑥 ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) → ∃! 𝑥 ( 𝜑 ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) | |
| 21 | 19 20 | mpdan | ⊢ ( ¬ 𝜑 → ∃! 𝑥 ( 𝜑 ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
| 22 | id | ⊢ ( ¬ 𝜑 → ¬ 𝜑 ) | |
| 23 | 22 | bianfd | ⊢ ( ¬ 𝜑 → ( 𝜑 ↔ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
| 24 | 23 | orbi1d | ⊢ ( ¬ 𝜑 → ( ( 𝜑 ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) ) |
| 25 | 24 | eubidv | ⊢ ( ¬ 𝜑 → ( ∃! 𝑥 ( 𝜑 ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ↔ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) ) |
| 26 | 21 25 | mpbid | ⊢ ( ¬ 𝜑 → ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
| 27 | 15 26 | pm2.61i | ⊢ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 = 𝐵 ) ) |