This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of the category ExtStr of extensible structures. This is the category whose objects are all sets in a universe u regarded as extensible structures and whose morphisms are the functions between their base sets. If a set is not a real extensible structure, it is regarded as extensible structure with an empty base set. Because of bascnvimaeqv we do not need to restrict the universe to sets which "have a base". Generally, we will take u to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Proposed by Mario Carneiro, 5-Mar-2020.) (Contributed by AV, 7-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-estrc | |- ExtStrCat = ( u e. _V |-> { <. ( Base ` ndx ) , u >. , <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cestrc | |- ExtStrCat |
|
| 1 | vu | |- u |
|
| 2 | cvv | |- _V |
|
| 3 | cbs | |- Base |
|
| 4 | cnx | |- ndx |
|
| 5 | 4 3 | cfv | |- ( Base ` ndx ) |
| 6 | 1 | cv | |- u |
| 7 | 5 6 | cop | |- <. ( Base ` ndx ) , u >. |
| 8 | chom | |- Hom |
|
| 9 | 4 8 | cfv | |- ( Hom ` ndx ) |
| 10 | vx | |- x |
|
| 11 | vy | |- y |
|
| 12 | 11 | cv | |- y |
| 13 | 12 3 | cfv | |- ( Base ` y ) |
| 14 | cmap | |- ^m |
|
| 15 | 10 | cv | |- x |
| 16 | 15 3 | cfv | |- ( Base ` x ) |
| 17 | 13 16 14 | co | |- ( ( Base ` y ) ^m ( Base ` x ) ) |
| 18 | 10 11 6 6 17 | cmpo | |- ( x e. u , y e. u |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) |
| 19 | 9 18 | cop | |- <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. |
| 20 | cco | |- comp |
|
| 21 | 4 20 | cfv | |- ( comp ` ndx ) |
| 22 | vv | |- v |
|
| 23 | 6 6 | cxp | |- ( u X. u ) |
| 24 | vz | |- z |
|
| 25 | vg | |- g |
|
| 26 | 24 | cv | |- z |
| 27 | 26 3 | cfv | |- ( Base ` z ) |
| 28 | c2nd | |- 2nd |
|
| 29 | 22 | cv | |- v |
| 30 | 29 28 | cfv | |- ( 2nd ` v ) |
| 31 | 30 3 | cfv | |- ( Base ` ( 2nd ` v ) ) |
| 32 | 27 31 14 | co | |- ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) |
| 33 | vf | |- f |
|
| 34 | c1st | |- 1st |
|
| 35 | 29 34 | cfv | |- ( 1st ` v ) |
| 36 | 35 3 | cfv | |- ( Base ` ( 1st ` v ) ) |
| 37 | 31 36 14 | co | |- ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |
| 38 | 25 | cv | |- g |
| 39 | 33 | cv | |- f |
| 40 | 38 39 | ccom | |- ( g o. f ) |
| 41 | 25 33 32 37 40 | cmpo | |- ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) |
| 42 | 22 24 23 6 41 | cmpo | |- ( v e. ( u X. u ) , z e. u |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) |
| 43 | 21 42 | cop | |- <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. |
| 44 | 7 19 43 | ctp | |- { <. ( Base ` ndx ) , u >. , <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } |
| 45 | 1 2 44 | cmpt | |- ( u e. _V |-> { <. ( Base ` ndx ) , u >. , <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } ) |
| 46 | 0 45 | wceq | |- ExtStrCat = ( u e. _V |-> { <. ( Base ` ndx ) , u >. , <. ( Hom ` ndx ) , ( x e. u , y e. u |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( u X. u ) , z e. u |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } ) |