This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The proper substitution of an ordered pair for a setvar variable corresponds to a proper substitution of its first component. (Contributed by AV, 8-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbcop.z | |- ( z = <. x , y >. -> ( ph <-> ps ) ) |
|
| Assertion | sbcop1 | |- ( [. a / x ]. ps <-> [. <. a , y >. / z ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcop.z | |- ( z = <. x , y >. -> ( ph <-> ps ) ) |
|
| 2 | sbc5 | |- ( [. a / x ]. ps <-> E. x ( x = a /\ ps ) ) |
|
| 3 | opeq1 | |- ( a = x -> <. a , y >. = <. x , y >. ) |
|
| 4 | 3 | equcoms | |- ( x = a -> <. a , y >. = <. x , y >. ) |
| 5 | 4 | eqeq2d | |- ( x = a -> ( z = <. a , y >. <-> z = <. x , y >. ) ) |
| 6 | 1 | biimprd | |- ( z = <. x , y >. -> ( ps -> ph ) ) |
| 7 | 5 6 | biimtrdi | |- ( x = a -> ( z = <. a , y >. -> ( ps -> ph ) ) ) |
| 8 | 7 | com23 | |- ( x = a -> ( ps -> ( z = <. a , y >. -> ph ) ) ) |
| 9 | 8 | imp | |- ( ( x = a /\ ps ) -> ( z = <. a , y >. -> ph ) ) |
| 10 | 9 | exlimiv | |- ( E. x ( x = a /\ ps ) -> ( z = <. a , y >. -> ph ) ) |
| 11 | 2 10 | sylbi | |- ( [. a / x ]. ps -> ( z = <. a , y >. -> ph ) ) |
| 12 | 11 | alrimiv | |- ( [. a / x ]. ps -> A. z ( z = <. a , y >. -> ph ) ) |
| 13 | opex | |- <. a , y >. e. _V |
|
| 14 | 13 | sbc6 | |- ( [. <. a , y >. / z ]. ph <-> A. z ( z = <. a , y >. -> ph ) ) |
| 15 | 12 14 | sylibr | |- ( [. a / x ]. ps -> [. <. a , y >. / z ]. ph ) |
| 16 | sbc5 | |- ( [. <. a , y >. / z ]. ph <-> E. z ( z = <. a , y >. /\ ph ) ) |
|
| 17 | 1 | biimpd | |- ( z = <. x , y >. -> ( ph -> ps ) ) |
| 18 | 5 17 | biimtrdi | |- ( x = a -> ( z = <. a , y >. -> ( ph -> ps ) ) ) |
| 19 | 18 | com3l | |- ( z = <. a , y >. -> ( ph -> ( x = a -> ps ) ) ) |
| 20 | 19 | imp | |- ( ( z = <. a , y >. /\ ph ) -> ( x = a -> ps ) ) |
| 21 | 20 | alrimiv | |- ( ( z = <. a , y >. /\ ph ) -> A. x ( x = a -> ps ) ) |
| 22 | vex | |- a e. _V |
|
| 23 | 22 | sbc6 | |- ( [. a / x ]. ps <-> A. x ( x = a -> ps ) ) |
| 24 | 21 23 | sylibr | |- ( ( z = <. a , y >. /\ ph ) -> [. a / x ]. ps ) |
| 25 | 24 | exlimiv | |- ( E. z ( z = <. a , y >. /\ ph ) -> [. a / x ]. ps ) |
| 26 | 16 25 | sylbi | |- ( [. <. a , y >. / z ]. ph -> [. a / x ]. ps ) |
| 27 | 15 26 | impbii | |- ( [. a / x ]. ps <-> [. <. a , y >. / z ]. ph ) |