This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly decreasing real function on a subset of RR is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltord.1 | |- ( x = y -> A = B ) |
|
| ltord.2 | |- ( x = C -> A = M ) |
||
| ltord.3 | |- ( x = D -> A = N ) |
||
| ltord.4 | |- S C_ RR |
||
| ltord.5 | |- ( ( ph /\ x e. S ) -> A e. RR ) |
||
| ltord2.6 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x < y -> B < A ) ) |
||
| Assertion | eqord2 | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C = D <-> M = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltord.1 | |- ( x = y -> A = B ) |
|
| 2 | ltord.2 | |- ( x = C -> A = M ) |
|
| 3 | ltord.3 | |- ( x = D -> A = N ) |
|
| 4 | ltord.4 | |- S C_ RR |
|
| 5 | ltord.5 | |- ( ( ph /\ x e. S ) -> A e. RR ) |
|
| 6 | ltord2.6 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x < y -> B < A ) ) |
|
| 7 | 1 | negeqd | |- ( x = y -> -u A = -u B ) |
| 8 | 2 | negeqd | |- ( x = C -> -u A = -u M ) |
| 9 | 3 | negeqd | |- ( x = D -> -u A = -u N ) |
| 10 | 5 | renegcld | |- ( ( ph /\ x e. S ) -> -u A e. RR ) |
| 11 | 5 | ralrimiva | |- ( ph -> A. x e. S A e. RR ) |
| 12 | 1 | eleq1d | |- ( x = y -> ( A e. RR <-> B e. RR ) ) |
| 13 | 12 | rspccva | |- ( ( A. x e. S A e. RR /\ y e. S ) -> B e. RR ) |
| 14 | 11 13 | sylan | |- ( ( ph /\ y e. S ) -> B e. RR ) |
| 15 | 14 | adantrl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> B e. RR ) |
| 16 | 5 | adantrr | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> A e. RR ) |
| 17 | ltneg | |- ( ( B e. RR /\ A e. RR ) -> ( B < A <-> -u A < -u B ) ) |
|
| 18 | 15 16 17 | syl2anc | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( B < A <-> -u A < -u B ) ) |
| 19 | 6 18 | sylibd | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x < y -> -u A < -u B ) ) |
| 20 | 7 8 9 4 10 19 | eqord1 | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C = D <-> -u M = -u N ) ) |
| 21 | 2 | eleq1d | |- ( x = C -> ( A e. RR <-> M e. RR ) ) |
| 22 | 21 | rspccva | |- ( ( A. x e. S A e. RR /\ C e. S ) -> M e. RR ) |
| 23 | 11 22 | sylan | |- ( ( ph /\ C e. S ) -> M e. RR ) |
| 24 | 23 | adantrr | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> M e. RR ) |
| 25 | 24 | recnd | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> M e. CC ) |
| 26 | 3 | eleq1d | |- ( x = D -> ( A e. RR <-> N e. RR ) ) |
| 27 | 26 | rspccva | |- ( ( A. x e. S A e. RR /\ D e. S ) -> N e. RR ) |
| 28 | 11 27 | sylan | |- ( ( ph /\ D e. S ) -> N e. RR ) |
| 29 | 28 | adantrl | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> N e. RR ) |
| 30 | 29 | recnd | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> N e. CC ) |
| 31 | 25 30 | neg11ad | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( -u M = -u N <-> M = N ) ) |
| 32 | 20 31 | bitrd | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C = D <-> M = N ) ) |