This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly increasing real function on a subset of RR is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltord.1 | |- ( x = y -> A = B ) |
|
| ltord.2 | |- ( x = C -> A = M ) |
||
| ltord.3 | |- ( x = D -> A = N ) |
||
| ltord.4 | |- S C_ RR |
||
| ltord.5 | |- ( ( ph /\ x e. S ) -> A e. RR ) |
||
| ltord.6 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x < y -> A < B ) ) |
||
| Assertion | eqord1 | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C = D <-> M = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltord.1 | |- ( x = y -> A = B ) |
|
| 2 | ltord.2 | |- ( x = C -> A = M ) |
|
| 3 | ltord.3 | |- ( x = D -> A = N ) |
|
| 4 | ltord.4 | |- S C_ RR |
|
| 5 | ltord.5 | |- ( ( ph /\ x e. S ) -> A e. RR ) |
|
| 6 | ltord.6 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x < y -> A < B ) ) |
|
| 7 | 1 2 3 4 5 6 | leord1 | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C <_ D <-> M <_ N ) ) |
| 8 | 1 3 2 4 5 6 | leord1 | |- ( ( ph /\ ( D e. S /\ C e. S ) ) -> ( D <_ C <-> N <_ M ) ) |
| 9 | 8 | ancom2s | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( D <_ C <-> N <_ M ) ) |
| 10 | 7 9 | anbi12d | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( ( C <_ D /\ D <_ C ) <-> ( M <_ N /\ N <_ M ) ) ) |
| 11 | 4 | sseli | |- ( C e. S -> C e. RR ) |
| 12 | 4 | sseli | |- ( D e. S -> D e. RR ) |
| 13 | letri3 | |- ( ( C e. RR /\ D e. RR ) -> ( C = D <-> ( C <_ D /\ D <_ C ) ) ) |
|
| 14 | 11 12 13 | syl2an | |- ( ( C e. S /\ D e. S ) -> ( C = D <-> ( C <_ D /\ D <_ C ) ) ) |
| 15 | 14 | adantl | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C = D <-> ( C <_ D /\ D <_ C ) ) ) |
| 16 | 5 | ralrimiva | |- ( ph -> A. x e. S A e. RR ) |
| 17 | 2 | eleq1d | |- ( x = C -> ( A e. RR <-> M e. RR ) ) |
| 18 | 17 | rspccva | |- ( ( A. x e. S A e. RR /\ C e. S ) -> M e. RR ) |
| 19 | 16 18 | sylan | |- ( ( ph /\ C e. S ) -> M e. RR ) |
| 20 | 19 | adantrr | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> M e. RR ) |
| 21 | 3 | eleq1d | |- ( x = D -> ( A e. RR <-> N e. RR ) ) |
| 22 | 21 | rspccva | |- ( ( A. x e. S A e. RR /\ D e. S ) -> N e. RR ) |
| 23 | 16 22 | sylan | |- ( ( ph /\ D e. S ) -> N e. RR ) |
| 24 | 23 | adantrl | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> N e. RR ) |
| 25 | 20 24 | letri3d | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( M = N <-> ( M <_ N /\ N <_ M ) ) ) |
| 26 | 10 15 25 | 3bitr4d | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C = D <-> M = N ) ) |