This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Alexander van der Vekens, 5-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brabv | |- ( X { <. x , y >. | ph } Y -> ( X e. _V /\ Y e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br | |- ( X { <. x , y >. | ph } Y <-> <. X , Y >. e. { <. x , y >. | ph } ) |
|
| 2 | opprc | |- ( -. ( X e. _V /\ Y e. _V ) -> <. X , Y >. = (/) ) |
|
| 3 | 0nelopab | |- -. (/) e. { <. x , y >. | ph } |
|
| 4 | eleq1 | |- ( <. X , Y >. = (/) -> ( <. X , Y >. e. { <. x , y >. | ph } <-> (/) e. { <. x , y >. | ph } ) ) |
|
| 5 | 3 4 | mtbiri | |- ( <. X , Y >. = (/) -> -. <. X , Y >. e. { <. x , y >. | ph } ) |
| 6 | 2 5 | syl | |- ( -. ( X e. _V /\ Y e. _V ) -> -. <. X , Y >. e. { <. x , y >. | ph } ) |
| 7 | 6 | con4i | |- ( <. X , Y >. e. { <. x , y >. | ph } -> ( X e. _V /\ Y e. _V ) ) |
| 8 | 1 7 | sylbi | |- ( X { <. x , y >. | ph } Y -> ( X e. _V /\ Y e. _V ) ) |