This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shorter proof of en0 , depending on ax-pow and ax-un . (Contributed by NM, 27-May-1998) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en0ALT | |- ( A ~~ (/) <-> A = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren | |- ( A ~~ (/) <-> E. f f : A -1-1-onto-> (/) ) |
|
| 2 | f1ocnv | |- ( f : A -1-1-onto-> (/) -> `' f : (/) -1-1-onto-> A ) |
|
| 3 | f1o00 | |- ( `' f : (/) -1-1-onto-> A <-> ( `' f = (/) /\ A = (/) ) ) |
|
| 4 | 3 | simprbi | |- ( `' f : (/) -1-1-onto-> A -> A = (/) ) |
| 5 | 2 4 | syl | |- ( f : A -1-1-onto-> (/) -> A = (/) ) |
| 6 | 5 | exlimiv | |- ( E. f f : A -1-1-onto-> (/) -> A = (/) ) |
| 7 | 1 6 | sylbi | |- ( A ~~ (/) -> A = (/) ) |
| 8 | 0ex | |- (/) e. _V |
|
| 9 | 8 | enref | |- (/) ~~ (/) |
| 10 | breq1 | |- ( A = (/) -> ( A ~~ (/) <-> (/) ~~ (/) ) ) |
|
| 11 | 9 10 | mpbiri | |- ( A = (/) -> A ~~ (/) ) |
| 12 | 7 11 | impbii | |- ( A ~~ (/) <-> A = (/) ) |