This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negative contraposition law. (Contributed by NM, 9-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negcon1 | |- ( ( A e. CC /\ B e. CC ) -> ( -u A = B <-> -u B = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 2 | neg11 | |- ( ( -u A e. CC /\ B e. CC ) -> ( -u -u A = -u B <-> -u A = B ) ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. CC /\ B e. CC ) -> ( -u -u A = -u B <-> -u A = B ) ) |
| 4 | negneg | |- ( A e. CC -> -u -u A = A ) |
|
| 5 | 4 | adantr | |- ( ( A e. CC /\ B e. CC ) -> -u -u A = A ) |
| 6 | 5 | eqeq1d | |- ( ( A e. CC /\ B e. CC ) -> ( -u -u A = -u B <-> A = -u B ) ) |
| 7 | 3 6 | bitr3d | |- ( ( A e. CC /\ B e. CC ) -> ( -u A = B <-> A = -u B ) ) |
| 8 | eqcom | |- ( A = -u B <-> -u B = A ) |
|
| 9 | 7 8 | bitrdi | |- ( ( A e. CC /\ B e. CC ) -> ( -u A = B <-> -u B = A ) ) |