This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of all Tarski classes. Tarski classes is a phrase coined by Grzegorz Bancerek in his articleTarski's Classes and Ranks, Journal of Formalized Mathematics, Vol 1, No 3, May-August 1990. A Tarski class is a set whose existence is ensured by Tarski's Axiom A (see ax-groth and the equivalent axioms). Axiom A was first presented in Tarski's articleUeber unerreichbare Kardinalzahlen. Tarski introduced Axiom A to allow reasoning with inaccessible cardinals in ZFC. Later, Grothendieck introduced the concept of (Grothendieck) universes and showed they were exactly transitive Tarski classes. (Contributed by FL, 30-Dec-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tsk | |- Tarski = { y | ( A. z e. y ( ~P z C_ y /\ E. w e. y ~P z C_ w ) /\ A. z e. ~P y ( z ~~ y \/ z e. y ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctsk | |- Tarski |
|
| 1 | vy | |- y |
|
| 2 | vz | |- z |
|
| 3 | 1 | cv | |- y |
| 4 | 2 | cv | |- z |
| 5 | 4 | cpw | |- ~P z |
| 6 | 5 3 | wss | |- ~P z C_ y |
| 7 | vw | |- w |
|
| 8 | 7 | cv | |- w |
| 9 | 5 8 | wss | |- ~P z C_ w |
| 10 | 9 7 3 | wrex | |- E. w e. y ~P z C_ w |
| 11 | 6 10 | wa | |- ( ~P z C_ y /\ E. w e. y ~P z C_ w ) |
| 12 | 11 2 3 | wral | |- A. z e. y ( ~P z C_ y /\ E. w e. y ~P z C_ w ) |
| 13 | 3 | cpw | |- ~P y |
| 14 | cen | |- ~~ |
|
| 15 | 4 3 14 | wbr | |- z ~~ y |
| 16 | 4 3 | wcel | |- z e. y |
| 17 | 15 16 | wo | |- ( z ~~ y \/ z e. y ) |
| 18 | 17 2 13 | wral | |- A. z e. ~P y ( z ~~ y \/ z e. y ) |
| 19 | 12 18 | wa | |- ( A. z e. y ( ~P z C_ y /\ E. w e. y ~P z C_ w ) /\ A. z e. ~P y ( z ~~ y \/ z e. y ) ) |
| 20 | 19 1 | cab | |- { y | ( A. z e. y ( ~P z C_ y /\ E. w e. y ~P z C_ w ) /\ A. z e. ~P y ( z ~~ y \/ z e. y ) ) } |
| 21 | 0 20 | wceq | |- Tarski = { y | ( A. z e. y ( ~P z C_ y /\ E. w e. y ~P z C_ w ) /\ A. z e. ~P y ( z ~~ y \/ z e. y ) ) } |