This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elsnres.1 | |- C e. _V |
|
| Assertion | elsnres | |- ( A e. ( B |` { C } ) <-> E. y ( A = <. C , y >. /\ <. C , y >. e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsnres.1 | |- C e. _V |
|
| 2 | elres | |- ( A e. ( B |` { C } ) <-> E. x e. { C } E. y ( A = <. x , y >. /\ <. x , y >. e. B ) ) |
|
| 3 | rexcom4 | |- ( E. x e. { C } E. y ( A = <. x , y >. /\ <. x , y >. e. B ) <-> E. y E. x e. { C } ( A = <. x , y >. /\ <. x , y >. e. B ) ) |
|
| 4 | opeq1 | |- ( x = C -> <. x , y >. = <. C , y >. ) |
|
| 5 | 4 | eqeq2d | |- ( x = C -> ( A = <. x , y >. <-> A = <. C , y >. ) ) |
| 6 | 4 | eleq1d | |- ( x = C -> ( <. x , y >. e. B <-> <. C , y >. e. B ) ) |
| 7 | 5 6 | anbi12d | |- ( x = C -> ( ( A = <. x , y >. /\ <. x , y >. e. B ) <-> ( A = <. C , y >. /\ <. C , y >. e. B ) ) ) |
| 8 | 1 7 | rexsn | |- ( E. x e. { C } ( A = <. x , y >. /\ <. x , y >. e. B ) <-> ( A = <. C , y >. /\ <. C , y >. e. B ) ) |
| 9 | 8 | exbii | |- ( E. y E. x e. { C } ( A = <. x , y >. /\ <. x , y >. e. B ) <-> E. y ( A = <. C , y >. /\ <. C , y >. e. B ) ) |
| 10 | 2 3 9 | 3bitri | |- ( A e. ( B |` { C } ) <-> E. y ( A = <. C , y >. /\ <. C , y >. e. B ) ) |