This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011) (Proof shortened by Peter Mazsa, 9-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elres | |- ( A e. ( B |` C ) <-> E. x e. C E. y ( A = <. x , y >. /\ <. x , y >. e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | |- ( B |` C ) = ( B i^i ( C X. _V ) ) |
|
| 2 | 1 | eleq2i | |- ( A e. ( B |` C ) <-> A e. ( B i^i ( C X. _V ) ) ) |
| 3 | elinxp | |- ( A e. ( B i^i ( C X. _V ) ) <-> E. x e. C E. y e. _V ( A = <. x , y >. /\ <. x , y >. e. B ) ) |
|
| 4 | rexv | |- ( E. y e. _V ( A = <. x , y >. /\ <. x , y >. e. B ) <-> E. y ( A = <. x , y >. /\ <. x , y >. e. B ) ) |
|
| 5 | 4 | rexbii | |- ( E. x e. C E. y e. _V ( A = <. x , y >. /\ <. x , y >. e. B ) <-> E. x e. C E. y ( A = <. x , y >. /\ <. x , y >. e. B ) ) |
| 6 | 2 3 5 | 3bitri | |- ( A e. ( B |` C ) <-> E. x e. C E. y ( A = <. x , y >. /\ <. x , y >. e. B ) ) |