This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC STRUCTURES
Extensible structures
Definition of the structure product
elrestr
Metamath Proof Explorer
Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins , 11-Jul-2009) (Revised by Mario Carneiro , 15-Dec-2013)
Ref
Expression
Assertion
elrestr
⊢ J ∈ V ∧ S ∈ W ∧ A ∈ J → A ∩ S ∈ J ↾ 𝑡 S
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢ A ∩ S = A ∩ S
2
ineq1
⊢ x = A → x ∩ S = A ∩ S
3
2
rspceeqv
⊢ A ∈ J ∧ A ∩ S = A ∩ S → ∃ x ∈ J A ∩ S = x ∩ S
4
1 3
mpan2
⊢ A ∈ J → ∃ x ∈ J A ∩ S = x ∩ S
5
elrest
⊢ J ∈ V ∧ S ∈ W → A ∩ S ∈ J ↾ 𝑡 S ↔ ∃ x ∈ J A ∩ S = x ∩ S
6
4 5
imbitrrid
⊢ J ∈ V ∧ S ∈ W → A ∈ J → A ∩ S ∈ J ↾ 𝑡 S
7
6
3impia
⊢ J ∈ V ∧ S ∈ W ∧ A ∈ J → A ∩ S ∈ J ↾ 𝑡 S