This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality and membership rule for pairs. (Contributed by Scott Fenton, 7-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpreqpr | |- ( A e. { B , C } -> E. x { B , C } = { A , x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri | |- ( A e. { B , C } -> ( A = B \/ A = C ) ) |
|
| 2 | elex | |- ( A e. { B , C } -> A e. _V ) |
|
| 3 | elpreqprlem | |- ( B e. _V -> E. x { B , C } = { B , x } ) |
|
| 4 | eleq1 | |- ( A = B -> ( A e. _V <-> B e. _V ) ) |
|
| 5 | preq1 | |- ( A = B -> { A , x } = { B , x } ) |
|
| 6 | 5 | eqeq2d | |- ( A = B -> ( { B , C } = { A , x } <-> { B , C } = { B , x } ) ) |
| 7 | 6 | exbidv | |- ( A = B -> ( E. x { B , C } = { A , x } <-> E. x { B , C } = { B , x } ) ) |
| 8 | 4 7 | imbi12d | |- ( A = B -> ( ( A e. _V -> E. x { B , C } = { A , x } ) <-> ( B e. _V -> E. x { B , C } = { B , x } ) ) ) |
| 9 | 3 8 | mpbiri | |- ( A = B -> ( A e. _V -> E. x { B , C } = { A , x } ) ) |
| 10 | 9 | imp | |- ( ( A = B /\ A e. _V ) -> E. x { B , C } = { A , x } ) |
| 11 | elpreqprlem | |- ( C e. _V -> E. x { C , B } = { C , x } ) |
|
| 12 | prcom | |- { C , B } = { B , C } |
|
| 13 | 12 | eqeq1i | |- ( { C , B } = { C , x } <-> { B , C } = { C , x } ) |
| 14 | 13 | exbii | |- ( E. x { C , B } = { C , x } <-> E. x { B , C } = { C , x } ) |
| 15 | 11 14 | sylib | |- ( C e. _V -> E. x { B , C } = { C , x } ) |
| 16 | eleq1 | |- ( A = C -> ( A e. _V <-> C e. _V ) ) |
|
| 17 | preq1 | |- ( A = C -> { A , x } = { C , x } ) |
|
| 18 | 17 | eqeq2d | |- ( A = C -> ( { B , C } = { A , x } <-> { B , C } = { C , x } ) ) |
| 19 | 18 | exbidv | |- ( A = C -> ( E. x { B , C } = { A , x } <-> E. x { B , C } = { C , x } ) ) |
| 20 | 16 19 | imbi12d | |- ( A = C -> ( ( A e. _V -> E. x { B , C } = { A , x } ) <-> ( C e. _V -> E. x { B , C } = { C , x } ) ) ) |
| 21 | 15 20 | mpbiri | |- ( A = C -> ( A e. _V -> E. x { B , C } = { A , x } ) ) |
| 22 | 21 | imp | |- ( ( A = C /\ A e. _V ) -> E. x { B , C } = { A , x } ) |
| 23 | 10 22 | jaoian | |- ( ( ( A = B \/ A = C ) /\ A e. _V ) -> E. x { B , C } = { A , x } ) |
| 24 | 1 2 23 | syl2anc | |- ( A e. { B , C } -> E. x { B , C } = { A , x } ) |