This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a projective subspace sum of two points. (Contributed by NM, 29-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | |- .<_ = ( le ` K ) |
|
| paddfval.j | |- .\/ = ( join ` K ) |
||
| paddfval.a | |- A = ( Atoms ` K ) |
||
| paddfval.p | |- .+ = ( +P ` K ) |
||
| Assertion | elpadd2at | |- ( ( K e. Lat /\ Q e. A /\ R e. A ) -> ( S e. ( { Q } .+ { R } ) <-> ( S e. A /\ S .<_ ( Q .\/ R ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | |- .<_ = ( le ` K ) |
|
| 2 | paddfval.j | |- .\/ = ( join ` K ) |
|
| 3 | paddfval.a | |- A = ( Atoms ` K ) |
|
| 4 | paddfval.p | |- .+ = ( +P ` K ) |
|
| 5 | simp1 | |- ( ( K e. Lat /\ Q e. A /\ R e. A ) -> K e. Lat ) |
|
| 6 | simp2 | |- ( ( K e. Lat /\ Q e. A /\ R e. A ) -> Q e. A ) |
|
| 7 | 6 | snssd | |- ( ( K e. Lat /\ Q e. A /\ R e. A ) -> { Q } C_ A ) |
| 8 | simp3 | |- ( ( K e. Lat /\ Q e. A /\ R e. A ) -> R e. A ) |
|
| 9 | snnzg | |- ( Q e. A -> { Q } =/= (/) ) |
|
| 10 | 9 | 3ad2ant2 | |- ( ( K e. Lat /\ Q e. A /\ R e. A ) -> { Q } =/= (/) ) |
| 11 | 1 2 3 4 | elpaddat | |- ( ( ( K e. Lat /\ { Q } C_ A /\ R e. A ) /\ { Q } =/= (/) ) -> ( S e. ( { Q } .+ { R } ) <-> ( S e. A /\ E. r e. { Q } S .<_ ( r .\/ R ) ) ) ) |
| 12 | 5 7 8 10 11 | syl31anc | |- ( ( K e. Lat /\ Q e. A /\ R e. A ) -> ( S e. ( { Q } .+ { R } ) <-> ( S e. A /\ E. r e. { Q } S .<_ ( r .\/ R ) ) ) ) |
| 13 | oveq1 | |- ( r = Q -> ( r .\/ R ) = ( Q .\/ R ) ) |
|
| 14 | 13 | breq2d | |- ( r = Q -> ( S .<_ ( r .\/ R ) <-> S .<_ ( Q .\/ R ) ) ) |
| 15 | 14 | rexsng | |- ( Q e. A -> ( E. r e. { Q } S .<_ ( r .\/ R ) <-> S .<_ ( Q .\/ R ) ) ) |
| 16 | 15 | 3ad2ant2 | |- ( ( K e. Lat /\ Q e. A /\ R e. A ) -> ( E. r e. { Q } S .<_ ( r .\/ R ) <-> S .<_ ( Q .\/ R ) ) ) |
| 17 | 16 | anbi2d | |- ( ( K e. Lat /\ Q e. A /\ R e. A ) -> ( ( S e. A /\ E. r e. { Q } S .<_ ( r .\/ R ) ) <-> ( S e. A /\ S .<_ ( Q .\/ R ) ) ) ) |
| 18 | 12 17 | bitrd | |- ( ( K e. Lat /\ Q e. A /\ R e. A ) -> ( S e. ( { Q } .+ { R } ) <-> ( S e. A /\ S .<_ ( Q .\/ R ) ) ) ) |