This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a projective subspace sum of two points. (Contributed by NM, 8-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | |- .<_ = ( le ` K ) |
|
| paddfval.j | |- .\/ = ( join ` K ) |
||
| paddfval.a | |- A = ( Atoms ` K ) |
||
| paddfval.p | |- .+ = ( +P ` K ) |
||
| Assertion | elpadd2at2 | |- ( ( K e. Lat /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( S e. ( { Q } .+ { R } ) <-> S .<_ ( Q .\/ R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | |- .<_ = ( le ` K ) |
|
| 2 | paddfval.j | |- .\/ = ( join ` K ) |
|
| 3 | paddfval.a | |- A = ( Atoms ` K ) |
|
| 4 | paddfval.p | |- .+ = ( +P ` K ) |
|
| 5 | 1 2 3 4 | elpadd2at | |- ( ( K e. Lat /\ Q e. A /\ R e. A ) -> ( S e. ( { Q } .+ { R } ) <-> ( S e. A /\ S .<_ ( Q .\/ R ) ) ) ) |
| 6 | 5 | 3adant3r3 | |- ( ( K e. Lat /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( S e. ( { Q } .+ { R } ) <-> ( S e. A /\ S .<_ ( Q .\/ R ) ) ) ) |
| 7 | simpr3 | |- ( ( K e. Lat /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> S e. A ) |
|
| 8 | 7 | biantrurd | |- ( ( K e. Lat /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( S .<_ ( Q .\/ R ) <-> ( S e. A /\ S .<_ ( Q .\/ R ) ) ) ) |
| 9 | 6 8 | bitr4d | |- ( ( K e. Lat /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( S e. ( { Q } .+ { R } ) <-> S .<_ ( Q .\/ R ) ) ) |