This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of projective subspace sum with at least one empty set. (Contributed by NM, 29-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | padd0.a | |- A = ( Atoms ` K ) |
|
| padd0.p | |- .+ = ( +P ` K ) |
||
| Assertion | elpadd0 | |- ( ( ( K e. B /\ X C_ A /\ Y C_ A ) /\ -. ( X =/= (/) /\ Y =/= (/) ) ) -> ( S e. ( X .+ Y ) <-> ( S e. X \/ S e. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | padd0.a | |- A = ( Atoms ` K ) |
|
| 2 | padd0.p | |- .+ = ( +P ` K ) |
|
| 3 | neanior | |- ( ( X =/= (/) /\ Y =/= (/) ) <-> -. ( X = (/) \/ Y = (/) ) ) |
|
| 4 | 3 | bicomi | |- ( -. ( X = (/) \/ Y = (/) ) <-> ( X =/= (/) /\ Y =/= (/) ) ) |
| 5 | 4 | con1bii | |- ( -. ( X =/= (/) /\ Y =/= (/) ) <-> ( X = (/) \/ Y = (/) ) ) |
| 6 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 7 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 8 | 6 7 1 2 | elpadd | |- ( ( K e. B /\ X C_ A /\ Y C_ A ) -> ( S e. ( X .+ Y ) <-> ( ( S e. X \/ S e. Y ) \/ ( S e. A /\ E. q e. X E. r e. Y S ( le ` K ) ( q ( join ` K ) r ) ) ) ) ) |
| 9 | rex0 | |- -. E. q e. (/) E. r e. Y S ( le ` K ) ( q ( join ` K ) r ) |
|
| 10 | rexeq | |- ( X = (/) -> ( E. q e. X E. r e. Y S ( le ` K ) ( q ( join ` K ) r ) <-> E. q e. (/) E. r e. Y S ( le ` K ) ( q ( join ` K ) r ) ) ) |
|
| 11 | 9 10 | mtbiri | |- ( X = (/) -> -. E. q e. X E. r e. Y S ( le ` K ) ( q ( join ` K ) r ) ) |
| 12 | rex0 | |- -. E. r e. (/) S ( le ` K ) ( q ( join ` K ) r ) |
|
| 13 | 12 | a1i | |- ( q e. X -> -. E. r e. (/) S ( le ` K ) ( q ( join ` K ) r ) ) |
| 14 | 13 | nrex | |- -. E. q e. X E. r e. (/) S ( le ` K ) ( q ( join ` K ) r ) |
| 15 | rexeq | |- ( Y = (/) -> ( E. r e. Y S ( le ` K ) ( q ( join ` K ) r ) <-> E. r e. (/) S ( le ` K ) ( q ( join ` K ) r ) ) ) |
|
| 16 | 15 | rexbidv | |- ( Y = (/) -> ( E. q e. X E. r e. Y S ( le ` K ) ( q ( join ` K ) r ) <-> E. q e. X E. r e. (/) S ( le ` K ) ( q ( join ` K ) r ) ) ) |
| 17 | 14 16 | mtbiri | |- ( Y = (/) -> -. E. q e. X E. r e. Y S ( le ` K ) ( q ( join ` K ) r ) ) |
| 18 | 11 17 | jaoi | |- ( ( X = (/) \/ Y = (/) ) -> -. E. q e. X E. r e. Y S ( le ` K ) ( q ( join ` K ) r ) ) |
| 19 | 18 | intnand | |- ( ( X = (/) \/ Y = (/) ) -> -. ( S e. A /\ E. q e. X E. r e. Y S ( le ` K ) ( q ( join ` K ) r ) ) ) |
| 20 | biorf | |- ( -. ( S e. A /\ E. q e. X E. r e. Y S ( le ` K ) ( q ( join ` K ) r ) ) -> ( ( S e. X \/ S e. Y ) <-> ( ( S e. A /\ E. q e. X E. r e. Y S ( le ` K ) ( q ( join ` K ) r ) ) \/ ( S e. X \/ S e. Y ) ) ) ) |
|
| 21 | 19 20 | syl | |- ( ( X = (/) \/ Y = (/) ) -> ( ( S e. X \/ S e. Y ) <-> ( ( S e. A /\ E. q e. X E. r e. Y S ( le ` K ) ( q ( join ` K ) r ) ) \/ ( S e. X \/ S e. Y ) ) ) ) |
| 22 | orcom | |- ( ( ( S e. A /\ E. q e. X E. r e. Y S ( le ` K ) ( q ( join ` K ) r ) ) \/ ( S e. X \/ S e. Y ) ) <-> ( ( S e. X \/ S e. Y ) \/ ( S e. A /\ E. q e. X E. r e. Y S ( le ` K ) ( q ( join ` K ) r ) ) ) ) |
|
| 23 | 21 22 | bitr2di | |- ( ( X = (/) \/ Y = (/) ) -> ( ( ( S e. X \/ S e. Y ) \/ ( S e. A /\ E. q e. X E. r e. Y S ( le ` K ) ( q ( join ` K ) r ) ) ) <-> ( S e. X \/ S e. Y ) ) ) |
| 24 | 8 23 | sylan9bb | |- ( ( ( K e. B /\ X C_ A /\ Y C_ A ) /\ ( X = (/) \/ Y = (/) ) ) -> ( S e. ( X .+ Y ) <-> ( S e. X \/ S e. Y ) ) ) |
| 25 | 5 24 | sylan2b | |- ( ( ( K e. B /\ X C_ A /\ Y C_ A ) /\ -. ( X =/= (/) /\ Y =/= (/) ) ) -> ( S e. ( X .+ Y ) <-> ( S e. X \/ S e. Y ) ) ) |