This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of projective subspace sum with at least one empty set. (Contributed by NM, 29-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | padd0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| padd0.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | elpadd0 | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ¬ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | padd0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | padd0.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 3 | neanior | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ↔ ¬ ( 𝑋 = ∅ ∨ 𝑌 = ∅ ) ) | |
| 4 | 3 | bicomi | ⊢ ( ¬ ( 𝑋 = ∅ ∨ 𝑌 = ∅ ) ↔ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) |
| 5 | 4 | con1bii | ⊢ ( ¬ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ↔ ( 𝑋 = ∅ ∨ 𝑌 = ∅ ) ) |
| 6 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 7 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 8 | 6 7 1 2 | elpadd | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ∨ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) ) |
| 9 | rex0 | ⊢ ¬ ∃ 𝑞 ∈ ∅ ∃ 𝑟 ∈ 𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) | |
| 10 | rexeq | ⊢ ( 𝑋 = ∅ → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ↔ ∃ 𝑞 ∈ ∅ ∃ 𝑟 ∈ 𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) | |
| 11 | 9 10 | mtbiri | ⊢ ( 𝑋 = ∅ → ¬ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) |
| 12 | rex0 | ⊢ ¬ ∃ 𝑟 ∈ ∅ 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) | |
| 13 | 12 | a1i | ⊢ ( 𝑞 ∈ 𝑋 → ¬ ∃ 𝑟 ∈ ∅ 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) |
| 14 | 13 | nrex | ⊢ ¬ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ ∅ 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) |
| 15 | rexeq | ⊢ ( 𝑌 = ∅ → ( ∃ 𝑟 ∈ 𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ↔ ∃ 𝑟 ∈ ∅ 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) | |
| 16 | 15 | rexbidv | ⊢ ( 𝑌 = ∅ → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ ∅ 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) |
| 17 | 14 16 | mtbiri | ⊢ ( 𝑌 = ∅ → ¬ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) |
| 18 | 11 17 | jaoi | ⊢ ( ( 𝑋 = ∅ ∨ 𝑌 = ∅ ) → ¬ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) |
| 19 | 18 | intnand | ⊢ ( ( 𝑋 = ∅ ∨ 𝑌 = ∅ ) → ¬ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) |
| 20 | biorf | ⊢ ( ¬ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) → ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ↔ ( ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ∨ ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ) ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝑋 = ∅ ∨ 𝑌 = ∅ ) → ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ↔ ( ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ∨ ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ) ) ) |
| 22 | orcom | ⊢ ( ( ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ∨ ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ) ↔ ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ∨ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) | |
| 23 | 21 22 | bitr2di | ⊢ ( ( 𝑋 = ∅ ∨ 𝑌 = ∅ ) → ( ( ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ∨ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ↔ ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ) ) |
| 24 | 8 23 | sylan9bb | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 = ∅ ∨ 𝑌 = ∅ ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ) ) |
| 25 | 5 24 | sylan2b | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ¬ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑆 ∈ 𝑋 ∨ 𝑆 ∈ 𝑌 ) ) ) |