This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oppfval . (Contributed by Zhi Wang, 13-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oppfvallem | |- ( F ( C Func D ) G -> ( Rel G /\ Rel dom G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 2 | id | |- ( F ( C Func D ) G -> F ( C Func D ) G ) |
|
| 3 | 1 2 | funcfn2 | |- ( F ( C Func D ) G -> G Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 4 | fnrel | |- ( G Fn ( ( Base ` C ) X. ( Base ` C ) ) -> Rel G ) |
|
| 5 | 3 4 | syl | |- ( F ( C Func D ) G -> Rel G ) |
| 6 | relxp | |- Rel ( ( Base ` C ) X. ( Base ` C ) ) |
|
| 7 | 3 | fndmd | |- ( F ( C Func D ) G -> dom G = ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 8 | 7 | releqd | |- ( F ( C Func D ) G -> ( Rel dom G <-> Rel ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 9 | 6 8 | mpbiri | |- ( F ( C Func D ) G -> Rel dom G ) |
| 10 | 5 9 | jca | |- ( F ( C Func D ) G -> ( Rel G /\ Rel dom G ) ) |