This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006) (Revised by David Abernethy, 19-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eloprabi.1 | |- ( x = ( 1st ` ( 1st ` A ) ) -> ( ph <-> ps ) ) |
|
| eloprabi.2 | |- ( y = ( 2nd ` ( 1st ` A ) ) -> ( ps <-> ch ) ) |
||
| eloprabi.3 | |- ( z = ( 2nd ` A ) -> ( ch <-> th ) ) |
||
| Assertion | eloprabi | |- ( A e. { <. <. x , y >. , z >. | ph } -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloprabi.1 | |- ( x = ( 1st ` ( 1st ` A ) ) -> ( ph <-> ps ) ) |
|
| 2 | eloprabi.2 | |- ( y = ( 2nd ` ( 1st ` A ) ) -> ( ps <-> ch ) ) |
|
| 3 | eloprabi.3 | |- ( z = ( 2nd ` A ) -> ( ch <-> th ) ) |
|
| 4 | eqeq1 | |- ( w = A -> ( w = <. <. x , y >. , z >. <-> A = <. <. x , y >. , z >. ) ) |
|
| 5 | 4 | anbi1d | |- ( w = A -> ( ( w = <. <. x , y >. , z >. /\ ph ) <-> ( A = <. <. x , y >. , z >. /\ ph ) ) ) |
| 6 | 5 | 3exbidv | |- ( w = A -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) <-> E. x E. y E. z ( A = <. <. x , y >. , z >. /\ ph ) ) ) |
| 7 | df-oprab | |- { <. <. x , y >. , z >. | ph } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } |
|
| 8 | 6 7 | elab2g | |- ( A e. { <. <. x , y >. , z >. | ph } -> ( A e. { <. <. x , y >. , z >. | ph } <-> E. x E. y E. z ( A = <. <. x , y >. , z >. /\ ph ) ) ) |
| 9 | 8 | ibi | |- ( A e. { <. <. x , y >. , z >. | ph } -> E. x E. y E. z ( A = <. <. x , y >. , z >. /\ ph ) ) |
| 10 | opex | |- <. x , y >. e. _V |
|
| 11 | vex | |- z e. _V |
|
| 12 | 10 11 | op1std | |- ( A = <. <. x , y >. , z >. -> ( 1st ` A ) = <. x , y >. ) |
| 13 | 12 | fveq2d | |- ( A = <. <. x , y >. , z >. -> ( 1st ` ( 1st ` A ) ) = ( 1st ` <. x , y >. ) ) |
| 14 | vex | |- x e. _V |
|
| 15 | vex | |- y e. _V |
|
| 16 | 14 15 | op1st | |- ( 1st ` <. x , y >. ) = x |
| 17 | 13 16 | eqtr2di | |- ( A = <. <. x , y >. , z >. -> x = ( 1st ` ( 1st ` A ) ) ) |
| 18 | 17 1 | syl | |- ( A = <. <. x , y >. , z >. -> ( ph <-> ps ) ) |
| 19 | 12 | fveq2d | |- ( A = <. <. x , y >. , z >. -> ( 2nd ` ( 1st ` A ) ) = ( 2nd ` <. x , y >. ) ) |
| 20 | 14 15 | op2nd | |- ( 2nd ` <. x , y >. ) = y |
| 21 | 19 20 | eqtr2di | |- ( A = <. <. x , y >. , z >. -> y = ( 2nd ` ( 1st ` A ) ) ) |
| 22 | 21 2 | syl | |- ( A = <. <. x , y >. , z >. -> ( ps <-> ch ) ) |
| 23 | 10 11 | op2ndd | |- ( A = <. <. x , y >. , z >. -> ( 2nd ` A ) = z ) |
| 24 | 23 | eqcomd | |- ( A = <. <. x , y >. , z >. -> z = ( 2nd ` A ) ) |
| 25 | 24 3 | syl | |- ( A = <. <. x , y >. , z >. -> ( ch <-> th ) ) |
| 26 | 18 22 25 | 3bitrd | |- ( A = <. <. x , y >. , z >. -> ( ph <-> th ) ) |
| 27 | 26 | biimpa | |- ( ( A = <. <. x , y >. , z >. /\ ph ) -> th ) |
| 28 | 27 | exlimiv | |- ( E. z ( A = <. <. x , y >. , z >. /\ ph ) -> th ) |
| 29 | 28 | exlimiv | |- ( E. y E. z ( A = <. <. x , y >. , z >. /\ ph ) -> th ) |
| 30 | 29 | exlimiv | |- ( E. x E. y E. z ( A = <. <. x , y >. , z >. /\ ph ) -> th ) |
| 31 | 9 30 | syl | |- ( A e. { <. <. x , y >. , z >. | ph } -> th ) |