This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simplification of elom assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elom3 | |- ( A e. _om <-> A. x ( Lim x -> A e. x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elom | |- ( A e. _om <-> ( A e. On /\ A. x ( Lim x -> A e. x ) ) ) |
|
| 2 | limom | |- Lim _om |
|
| 3 | omex | |- _om e. _V |
|
| 4 | limeq | |- ( x = _om -> ( Lim x <-> Lim _om ) ) |
|
| 5 | eleq2 | |- ( x = _om -> ( A e. x <-> A e. _om ) ) |
|
| 6 | 4 5 | imbi12d | |- ( x = _om -> ( ( Lim x -> A e. x ) <-> ( Lim _om -> A e. _om ) ) ) |
| 7 | 3 6 | spcv | |- ( A. x ( Lim x -> A e. x ) -> ( Lim _om -> A e. _om ) ) |
| 8 | 2 7 | mpi | |- ( A. x ( Lim x -> A e. x ) -> A e. _om ) |
| 9 | nnon | |- ( A e. _om -> A e. On ) |
|
| 10 | 8 9 | syl | |- ( A. x ( Lim x -> A e. x ) -> A e. On ) |
| 11 | 10 | pm4.71ri | |- ( A. x ( Lim x -> A e. x ) <-> ( A e. On /\ A. x ( Lim x -> A e. x ) ) ) |
| 12 | 1 11 | bitr4i | |- ( A e. _om <-> A. x ( Lim x -> A e. x ) ) |