This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 12-May-2016) (Proof shortened by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elo1mpt.1 | |- ( ph -> A C_ RR ) |
|
| elo1mpt.2 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
||
| elo1d.3 | |- ( ph -> C e. RR ) |
||
| Assertion | elo1mpt2 | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> E. y e. ( C [,) +oo ) E. m e. RR A. x e. A ( y <_ x -> ( abs ` B ) <_ m ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elo1mpt.1 | |- ( ph -> A C_ RR ) |
|
| 2 | elo1mpt.2 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
| 3 | elo1d.3 | |- ( ph -> C e. RR ) |
|
| 4 | 2 | lo1o12 | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> ( abs ` B ) ) e. <_O(1) ) ) |
| 5 | 2 | abscld | |- ( ( ph /\ x e. A ) -> ( abs ` B ) e. RR ) |
| 6 | 1 5 3 | ello1mpt2 | |- ( ph -> ( ( x e. A |-> ( abs ` B ) ) e. <_O(1) <-> E. y e. ( C [,) +oo ) E. m e. RR A. x e. A ( y <_ x -> ( abs ` B ) <_ m ) ) ) |
| 7 | 4 6 | bitrd | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> E. y e. ( C [,) +oo ) E. m e. RR A. x e. A ( y <_ x -> ( abs ` B ) <_ m ) ) ) |