This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is eventually bounded iff its absolute value is eventually upper bounded. (This function is useful for converting theorems about <_O(1) to O(1) .) (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lo1o12.1 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
| Assertion | lo1o12 | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> ( abs ` B ) ) e. <_O(1) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lo1o12.1 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
| 2 | 1 | fmpttd | |- ( ph -> ( x e. A |-> B ) : A --> CC ) |
| 3 | lo1o1 | |- ( ( x e. A |-> B ) : A --> CC -> ( ( x e. A |-> B ) e. O(1) <-> ( abs o. ( x e. A |-> B ) ) e. <_O(1) ) ) |
|
| 4 | 2 3 | syl | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( abs o. ( x e. A |-> B ) ) e. <_O(1) ) ) |
| 5 | absf | |- abs : CC --> RR |
|
| 6 | 5 | a1i | |- ( ph -> abs : CC --> RR ) |
| 7 | 6 1 | cofmpt | |- ( ph -> ( abs o. ( x e. A |-> B ) ) = ( x e. A |-> ( abs ` B ) ) ) |
| 8 | 7 | eleq1d | |- ( ph -> ( ( abs o. ( x e. A |-> B ) ) e. <_O(1) <-> ( x e. A |-> ( abs ` B ) ) e. <_O(1) ) ) |
| 9 | 4 8 | bitrd | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> ( abs ` B ) ) e. <_O(1) ) ) |