This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Limits
elo1mpt2
Metamath Proof Explorer
Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro , 12-May-2016) (Proof shortened by Mario Carneiro , 26-May-2016)
Ref
Expression
Hypotheses
elo1mpt.1
⊢ φ → A ⊆ ℝ
elo1mpt.2
⊢ φ ∧ x ∈ A → B ∈ ℂ
elo1d.3
⊢ φ → C ∈ ℝ
Assertion
elo1mpt2
⊢ φ → x ∈ A ⟼ B ∈ 𝑂 ⁡ 1 ↔ ∃ y ∈ C +∞ ∃ m ∈ ℝ ∀ x ∈ A y ≤ x → B ≤ m
Proof
Step
Hyp
Ref
Expression
1
elo1mpt.1
⊢ φ → A ⊆ ℝ
2
elo1mpt.2
⊢ φ ∧ x ∈ A → B ∈ ℂ
3
elo1d.3
⊢ φ → C ∈ ℝ
4
2
lo1o12
⊢ φ → x ∈ A ⟼ B ∈ 𝑂 ⁡ 1 ↔ x ∈ A ⟼ B ∈ ≤ 𝑂 ⁡ 1
5
2
abscld
⊢ φ ∧ x ∈ A → B ∈ ℝ
6
1 5 3
ello1mpt2
⊢ φ → x ∈ A ⟼ B ∈ ≤ 𝑂 ⁡ 1 ↔ ∃ y ∈ C +∞ ∃ m ∈ ℝ ∀ x ∈ A y ≤ x → B ≤ m
7
4 6
bitrd
⊢ φ → x ∈ A ⟼ B ∈ 𝑂 ⁡ 1 ↔ ∃ y ∈ C +∞ ∃ m ∈ ℝ ∀ x ∈ A y ≤ x → B ≤ m