This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A defining property of an open set of a metric space. (Contributed by NM, 5-May-2007) (Revised by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopnval.1 | |- J = ( MetOpen ` D ) |
|
| Assertion | elmopn2 | |- ( D e. ( *Met ` X ) -> ( A e. J <-> ( A C_ X /\ A. x e. A E. y e. RR+ ( x ( ball ` D ) y ) C_ A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopnval.1 | |- J = ( MetOpen ` D ) |
|
| 2 | 1 | elmopn | |- ( D e. ( *Met ` X ) -> ( A e. J <-> ( A C_ X /\ A. x e. A E. z e. ran ( ball ` D ) ( x e. z /\ z C_ A ) ) ) ) |
| 3 | ssel2 | |- ( ( A C_ X /\ x e. A ) -> x e. X ) |
|
| 4 | blssex | |- ( ( D e. ( *Met ` X ) /\ x e. X ) -> ( E. z e. ran ( ball ` D ) ( x e. z /\ z C_ A ) <-> E. y e. RR+ ( x ( ball ` D ) y ) C_ A ) ) |
|
| 5 | 3 4 | sylan2 | |- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ x e. A ) ) -> ( E. z e. ran ( ball ` D ) ( x e. z /\ z C_ A ) <-> E. y e. RR+ ( x ( ball ` D ) y ) C_ A ) ) |
| 6 | 5 | anassrs | |- ( ( ( D e. ( *Met ` X ) /\ A C_ X ) /\ x e. A ) -> ( E. z e. ran ( ball ` D ) ( x e. z /\ z C_ A ) <-> E. y e. RR+ ( x ( ball ` D ) y ) C_ A ) ) |
| 7 | 6 | ralbidva | |- ( ( D e. ( *Met ` X ) /\ A C_ X ) -> ( A. x e. A E. z e. ran ( ball ` D ) ( x e. z /\ z C_ A ) <-> A. x e. A E. y e. RR+ ( x ( ball ` D ) y ) C_ A ) ) |
| 8 | 7 | pm5.32da | |- ( D e. ( *Met ` X ) -> ( ( A C_ X /\ A. x e. A E. z e. ran ( ball ` D ) ( x e. z /\ z C_ A ) ) <-> ( A C_ X /\ A. x e. A E. y e. RR+ ( x ( ball ` D ) y ) C_ A ) ) ) |
| 9 | 2 8 | bitrd | |- ( D e. ( *Met ` X ) -> ( A e. J <-> ( A C_ X /\ A. x e. A E. y e. RR+ ( x ( ball ` D ) y ) C_ A ) ) ) |