This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defining property of an open set of a metric space. (Contributed by NM, 1-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopnval.1 | |- J = ( MetOpen ` D ) |
|
| Assertion | elmopn | |- ( D e. ( *Met ` X ) -> ( A e. J <-> ( A C_ X /\ A. x e. A E. y e. ran ( ball ` D ) ( x e. y /\ y C_ A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopnval.1 | |- J = ( MetOpen ` D ) |
|
| 2 | 1 | mopnval | |- ( D e. ( *Met ` X ) -> J = ( topGen ` ran ( ball ` D ) ) ) |
| 3 | 2 | eleq2d | |- ( D e. ( *Met ` X ) -> ( A e. J <-> A e. ( topGen ` ran ( ball ` D ) ) ) ) |
| 4 | blbas | |- ( D e. ( *Met ` X ) -> ran ( ball ` D ) e. TopBases ) |
|
| 5 | eltg2 | |- ( ran ( ball ` D ) e. TopBases -> ( A e. ( topGen ` ran ( ball ` D ) ) <-> ( A C_ U. ran ( ball ` D ) /\ A. x e. A E. y e. ran ( ball ` D ) ( x e. y /\ y C_ A ) ) ) ) |
|
| 6 | 4 5 | syl | |- ( D e. ( *Met ` X ) -> ( A e. ( topGen ` ran ( ball ` D ) ) <-> ( A C_ U. ran ( ball ` D ) /\ A. x e. A E. y e. ran ( ball ` D ) ( x e. y /\ y C_ A ) ) ) ) |
| 7 | unirnbl | |- ( D e. ( *Met ` X ) -> U. ran ( ball ` D ) = X ) |
|
| 8 | 7 | sseq2d | |- ( D e. ( *Met ` X ) -> ( A C_ U. ran ( ball ` D ) <-> A C_ X ) ) |
| 9 | 8 | anbi1d | |- ( D e. ( *Met ` X ) -> ( ( A C_ U. ran ( ball ` D ) /\ A. x e. A E. y e. ran ( ball ` D ) ( x e. y /\ y C_ A ) ) <-> ( A C_ X /\ A. x e. A E. y e. ran ( ball ` D ) ( x e. y /\ y C_ A ) ) ) ) |
| 10 | 3 6 9 | 3bitrd | |- ( D e. ( *Met ` X ) -> ( A e. J <-> ( A C_ X /\ A. x e. A E. y e. ran ( ball ` D ) ( x e. y /\ y C_ A ) ) ) ) |