This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzp1b | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K e. ( 0 ... ( N - 1 ) ) <-> ( K + 1 ) e. ( 1 ... N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2z | |- ( K e. ZZ -> ( K + 1 ) e. ZZ ) |
|
| 2 | 1z | |- 1 e. ZZ |
|
| 3 | fzsubel | |- ( ( ( 1 e. ZZ /\ N e. ZZ ) /\ ( ( K + 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( K + 1 ) e. ( 1 ... N ) <-> ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
|
| 4 | 2 3 | mpanl1 | |- ( ( N e. ZZ /\ ( ( K + 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( K + 1 ) e. ( 1 ... N ) <-> ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
| 5 | 2 4 | mpanr2 | |- ( ( N e. ZZ /\ ( K + 1 ) e. ZZ ) -> ( ( K + 1 ) e. ( 1 ... N ) <-> ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
| 6 | 1 5 | sylan2 | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( ( K + 1 ) e. ( 1 ... N ) <-> ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
| 7 | 6 | ancoms | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( ( K + 1 ) e. ( 1 ... N ) <-> ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) ) ) |
| 8 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 9 | ax-1cn | |- 1 e. CC |
|
| 10 | pncan | |- ( ( K e. CC /\ 1 e. CC ) -> ( ( K + 1 ) - 1 ) = K ) |
|
| 11 | 8 9 10 | sylancl | |- ( K e. ZZ -> ( ( K + 1 ) - 1 ) = K ) |
| 12 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 13 | 12 | oveq1i | |- ( ( 1 - 1 ) ... ( N - 1 ) ) = ( 0 ... ( N - 1 ) ) |
| 14 | 13 | a1i | |- ( K e. ZZ -> ( ( 1 - 1 ) ... ( N - 1 ) ) = ( 0 ... ( N - 1 ) ) ) |
| 15 | 11 14 | eleq12d | |- ( K e. ZZ -> ( ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) <-> K e. ( 0 ... ( N - 1 ) ) ) ) |
| 16 | 15 | adantr | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( ( ( K + 1 ) - 1 ) e. ( ( 1 - 1 ) ... ( N - 1 ) ) <-> K e. ( 0 ... ( N - 1 ) ) ) ) |
| 17 | 7 16 | bitr2d | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K e. ( 0 ... ( N - 1 ) ) <-> ( K + 1 ) e. ( 1 ... N ) ) ) |