This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an element of a half-open integer range is not in the upper part of the range, it is in the lower part of the range. (Contributed by Alexander van der Vekens, 29-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzonfzoufzol | |- ( ( M e. ZZ /\ M < N /\ I e. ( 0 ..^ N ) ) -> ( -. I e. ( ( N - M ) ..^ N ) -> I e. ( 0 ..^ ( N - M ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel2 | |- ( I e. ( 0 ..^ N ) -> N e. ZZ ) |
|
| 2 | zsubcl | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N - M ) e. ZZ ) |
|
| 3 | 2 | ex | |- ( N e. ZZ -> ( M e. ZZ -> ( N - M ) e. ZZ ) ) |
| 4 | 1 3 | syl | |- ( I e. ( 0 ..^ N ) -> ( M e. ZZ -> ( N - M ) e. ZZ ) ) |
| 5 | 4 | impcom | |- ( ( M e. ZZ /\ I e. ( 0 ..^ N ) ) -> ( N - M ) e. ZZ ) |
| 6 | 5 | 3adant2 | |- ( ( M e. ZZ /\ M < N /\ I e. ( 0 ..^ N ) ) -> ( N - M ) e. ZZ ) |
| 7 | 6 | adantr | |- ( ( ( M e. ZZ /\ M < N /\ I e. ( 0 ..^ N ) ) /\ -. I e. ( 0 ..^ ( N - M ) ) ) -> ( N - M ) e. ZZ ) |
| 8 | simp3 | |- ( ( M e. ZZ /\ M < N /\ I e. ( 0 ..^ N ) ) -> I e. ( 0 ..^ N ) ) |
|
| 9 | 8 | anim1i | |- ( ( ( M e. ZZ /\ M < N /\ I e. ( 0 ..^ N ) ) /\ -. I e. ( 0 ..^ ( N - M ) ) ) -> ( I e. ( 0 ..^ N ) /\ -. I e. ( 0 ..^ ( N - M ) ) ) ) |
| 10 | elfzonelfzo | |- ( ( N - M ) e. ZZ -> ( ( I e. ( 0 ..^ N ) /\ -. I e. ( 0 ..^ ( N - M ) ) ) -> I e. ( ( N - M ) ..^ N ) ) ) |
|
| 11 | 7 9 10 | sylc | |- ( ( ( M e. ZZ /\ M < N /\ I e. ( 0 ..^ N ) ) /\ -. I e. ( 0 ..^ ( N - M ) ) ) -> I e. ( ( N - M ) ..^ N ) ) |
| 12 | 11 | ex | |- ( ( M e. ZZ /\ M < N /\ I e. ( 0 ..^ N ) ) -> ( -. I e. ( 0 ..^ ( N - M ) ) -> I e. ( ( N - M ) ..^ N ) ) ) |
| 13 | 12 | con1d | |- ( ( M e. ZZ /\ M < N /\ I e. ( 0 ..^ N ) ) -> ( -. I e. ( ( N - M ) ..^ N ) -> I e. ( 0 ..^ ( N - M ) ) ) ) |