This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzm1b | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 1 ... 𝑁 ) ↔ ( 𝐾 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | ⊢ 1 ∈ ℤ | |
| 2 | fzsubel | ⊢ ( ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝐾 ∈ ( 1 ... 𝑁 ) ↔ ( 𝐾 − 1 ) ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ) ) | |
| 3 | 1 2 | mpanl1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝐾 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝐾 ∈ ( 1 ... 𝑁 ) ↔ ( 𝐾 − 1 ) ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ) ) |
| 4 | 1 3 | mpanr2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ∈ ( 1 ... 𝑁 ) ↔ ( 𝐾 − 1 ) ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ) ) |
| 5 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 6 | 5 | oveq1i | ⊢ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) = ( 0 ... ( 𝑁 − 1 ) ) |
| 7 | 6 | eleq2i | ⊢ ( ( 𝐾 − 1 ) ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ↔ ( 𝐾 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 8 | 4 7 | bitrdi | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ∈ ( 1 ... 𝑁 ) ↔ ( 𝐾 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
| 9 | 8 | ancoms | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 1 ... 𝑁 ) ↔ ( 𝐾 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |