This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 30-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elcnvrefrels3 | |- ( R e. CnvRefRels <-> ( A. x e. dom R A. y e. ran R ( x R y -> x = y ) /\ R e. Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnvrefrels3 | |- CnvRefRels = { r e. Rels | A. x e. dom r A. y e. ran r ( x r y -> x = y ) } |
|
| 2 | dmeq | |- ( r = R -> dom r = dom R ) |
|
| 3 | rneq | |- ( r = R -> ran r = ran R ) |
|
| 4 | breq | |- ( r = R -> ( x r y <-> x R y ) ) |
|
| 5 | 4 | imbi1d | |- ( r = R -> ( ( x r y -> x = y ) <-> ( x R y -> x = y ) ) ) |
| 6 | 3 5 | raleqbidv | |- ( r = R -> ( A. y e. ran r ( x r y -> x = y ) <-> A. y e. ran R ( x R y -> x = y ) ) ) |
| 7 | 2 6 | raleqbidv | |- ( r = R -> ( A. x e. dom r A. y e. ran r ( x r y -> x = y ) <-> A. x e. dom R A. y e. ran R ( x R y -> x = y ) ) ) |
| 8 | 1 7 | rabeqel | |- ( R e. CnvRefRels <-> ( A. x e. dom R A. y e. ran R ( x R y -> x = y ) /\ R e. Rels ) ) |