This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class without edges is a simple graph. Since ran F = (/) does not generally imply Fun F , but Fun ( iEdgG ) is required for G to be a simple graph, however, this must be provided as assertion. (Contributed by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | edg0usgr | |- ( ( G e. W /\ ( Edg ` G ) = (/) /\ Fun ( iEdg ` G ) ) -> G e. USGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 2 | 1 | a1i | |- ( G e. W -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
| 3 | 2 | eqeq1d | |- ( G e. W -> ( ( Edg ` G ) = (/) <-> ran ( iEdg ` G ) = (/) ) ) |
| 4 | funrel | |- ( Fun ( iEdg ` G ) -> Rel ( iEdg ` G ) ) |
|
| 5 | relrn0 | |- ( Rel ( iEdg ` G ) -> ( ( iEdg ` G ) = (/) <-> ran ( iEdg ` G ) = (/) ) ) |
|
| 6 | 5 | bicomd | |- ( Rel ( iEdg ` G ) -> ( ran ( iEdg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
| 7 | 4 6 | syl | |- ( Fun ( iEdg ` G ) -> ( ran ( iEdg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
| 8 | simpr | |- ( ( ( iEdg ` G ) = (/) /\ G e. W ) -> G e. W ) |
|
| 9 | simpl | |- ( ( ( iEdg ` G ) = (/) /\ G e. W ) -> ( iEdg ` G ) = (/) ) |
|
| 10 | 8 9 | usgr0e | |- ( ( ( iEdg ` G ) = (/) /\ G e. W ) -> G e. USGraph ) |
| 11 | 10 | ex | |- ( ( iEdg ` G ) = (/) -> ( G e. W -> G e. USGraph ) ) |
| 12 | 7 11 | biimtrdi | |- ( Fun ( iEdg ` G ) -> ( ran ( iEdg ` G ) = (/) -> ( G e. W -> G e. USGraph ) ) ) |
| 13 | 12 | com13 | |- ( G e. W -> ( ran ( iEdg ` G ) = (/) -> ( Fun ( iEdg ` G ) -> G e. USGraph ) ) ) |
| 14 | 3 13 | sylbid | |- ( G e. W -> ( ( Edg ` G ) = (/) -> ( Fun ( iEdg ` G ) -> G e. USGraph ) ) ) |
| 15 | 14 | 3imp | |- ( ( G e. W /\ ( Edg ` G ) = (/) /\ Fun ( iEdg ` G ) ) -> G e. USGraph ) |