This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a division ring the ring unit is different from the zero. (Contributed by FL, 14-Feb-2010) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrunz.1 | |- G = ( 1st ` R ) |
|
| dvrunz.2 | |- H = ( 2nd ` R ) |
||
| dvrunz.3 | |- X = ran G |
||
| dvrunz.4 | |- Z = ( GId ` G ) |
||
| dvrunz.5 | |- U = ( GId ` H ) |
||
| Assertion | dvrunz | |- ( R e. DivRingOps -> U =/= Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrunz.1 | |- G = ( 1st ` R ) |
|
| 2 | dvrunz.2 | |- H = ( 2nd ` R ) |
|
| 3 | dvrunz.3 | |- X = ran G |
|
| 4 | dvrunz.4 | |- Z = ( GId ` G ) |
|
| 5 | dvrunz.5 | |- U = ( GId ` H ) |
|
| 6 | 4 | fvexi | |- Z e. _V |
| 7 | 6 | zrdivrng | |- -. <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. e. DivRingOps |
| 8 | 1 2 3 4 | drngoi | |- ( R e. DivRingOps -> ( R e. RingOps /\ ( H |` ( ( X \ { Z } ) X. ( X \ { Z } ) ) ) e. GrpOp ) ) |
| 9 | 8 | simpld | |- ( R e. DivRingOps -> R e. RingOps ) |
| 10 | 1 2 4 5 3 | rngoueqz | |- ( R e. RingOps -> ( X ~~ 1o <-> U = Z ) ) |
| 11 | 9 10 | syl | |- ( R e. DivRingOps -> ( X ~~ 1o <-> U = Z ) ) |
| 12 | 1 3 4 | rngosn6 | |- ( R e. RingOps -> ( X ~~ 1o <-> R = <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. ) ) |
| 13 | 9 12 | syl | |- ( R e. DivRingOps -> ( X ~~ 1o <-> R = <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. ) ) |
| 14 | eleq1 | |- ( R = <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. -> ( R e. DivRingOps <-> <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. e. DivRingOps ) ) |
|
| 15 | 14 | biimpd | |- ( R = <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. -> ( R e. DivRingOps -> <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. e. DivRingOps ) ) |
| 16 | 13 15 | biimtrdi | |- ( R e. DivRingOps -> ( X ~~ 1o -> ( R e. DivRingOps -> <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. e. DivRingOps ) ) ) |
| 17 | 16 | pm2.43a | |- ( R e. DivRingOps -> ( X ~~ 1o -> <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. e. DivRingOps ) ) |
| 18 | 11 17 | sylbird | |- ( R e. DivRingOps -> ( U = Z -> <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. e. DivRingOps ) ) |
| 19 | 18 | necon3bd | |- ( R e. DivRingOps -> ( -. <. { <. <. Z , Z >. , Z >. } , { <. <. Z , Z >. , Z >. } >. e. DivRingOps -> U =/= Z ) ) |
| 20 | 7 19 | mpi | |- ( R e. DivRingOps -> U =/= Z ) |