This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero ring is not a division ring. (Contributed by FL, 24-Jan-2010) (Proof shortened by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zrdivrng.1 | |- A e. _V |
|
| Assertion | zrdivrng | |- -. <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. e. DivRingOps |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrdivrng.1 | |- A e. _V |
|
| 2 | 0ngrp | |- -. (/) e. GrpOp |
|
| 3 | opex | |- <. A , A >. e. _V |
|
| 4 | 3 | rnsnop | |- ran { <. <. A , A >. , A >. } = { A } |
| 5 | 1 | gidsn | |- ( GId ` { <. <. A , A >. , A >. } ) = A |
| 6 | 5 | sneqi | |- { ( GId ` { <. <. A , A >. , A >. } ) } = { A } |
| 7 | 4 6 | difeq12i | |- ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) = ( { A } \ { A } ) |
| 8 | difid | |- ( { A } \ { A } ) = (/) |
|
| 9 | 7 8 | eqtri | |- ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) = (/) |
| 10 | 9 | xpeq2i | |- ( ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) X. ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) ) = ( ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) X. (/) ) |
| 11 | xp0 | |- ( ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) X. (/) ) = (/) |
|
| 12 | 10 11 | eqtri | |- ( ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) X. ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) ) = (/) |
| 13 | 12 | reseq2i | |- ( { <. <. A , A >. , A >. } |` ( ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) X. ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) ) ) = ( { <. <. A , A >. , A >. } |` (/) ) |
| 14 | res0 | |- ( { <. <. A , A >. , A >. } |` (/) ) = (/) |
|
| 15 | 13 14 | eqtri | |- ( { <. <. A , A >. , A >. } |` ( ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) X. ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) ) ) = (/) |
| 16 | snex | |- { <. <. A , A >. , A >. } e. _V |
|
| 17 | isdivrngo | |- ( { <. <. A , A >. , A >. } e. _V -> ( <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. e. DivRingOps <-> ( <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. e. RingOps /\ ( { <. <. A , A >. , A >. } |` ( ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) X. ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) ) ) e. GrpOp ) ) ) |
|
| 18 | 16 17 | ax-mp | |- ( <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. e. DivRingOps <-> ( <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. e. RingOps /\ ( { <. <. A , A >. , A >. } |` ( ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) X. ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) ) ) e. GrpOp ) ) |
| 19 | 18 | simprbi | |- ( <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. e. DivRingOps -> ( { <. <. A , A >. , A >. } |` ( ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) X. ( ran { <. <. A , A >. , A >. } \ { ( GId ` { <. <. A , A >. , A >. } ) } ) ) ) e. GrpOp ) |
| 20 | 15 19 | eqeltrrid | |- ( <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. e. DivRingOps -> (/) e. GrpOp ) |
| 21 | 2 20 | mto | |- -. <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. e. DivRingOps |