This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One times iterated derivative. (Contributed by Mario Carneiro, 1-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvn1 | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 1 ) = ( S _D F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 2 | 1 | fveq2i | |- ( ( S Dn F ) ` ( 0 + 1 ) ) = ( ( S Dn F ) ` 1 ) |
| 3 | 0nn0 | |- 0 e. NN0 |
|
| 4 | dvnp1 | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ 0 e. NN0 ) -> ( ( S Dn F ) ` ( 0 + 1 ) ) = ( S _D ( ( S Dn F ) ` 0 ) ) ) |
|
| 5 | 3 4 | mp3an3 | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` ( 0 + 1 ) ) = ( S _D ( ( S Dn F ) ` 0 ) ) ) |
| 6 | dvn0 | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 0 ) = F ) |
|
| 7 | 6 | oveq2d | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( S _D ( ( S Dn F ) ` 0 ) ) = ( S _D F ) ) |
| 8 | 5 7 | eqtrd | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` ( 0 + 1 ) ) = ( S _D F ) ) |
| 9 | 2 8 | eqtr3id | |- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 1 ) = ( S _D F ) ) |