This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative: derivative of the identity. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptidg.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvmptidg.a | |- ( ph -> A e. ( ( TopOpen ` CCfld ) |`t S ) ) |
||
| Assertion | dvmptidg | |- ( ph -> ( S _D ( x e. A |-> x ) ) = ( x e. A |-> 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptidg.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvmptidg.a | |- ( ph -> A e. ( ( TopOpen ` CCfld ) |`t S ) ) |
|
| 3 | ax-resscn | |- RR C_ CC |
|
| 4 | sseq1 | |- ( S = RR -> ( S C_ CC <-> RR C_ CC ) ) |
|
| 5 | 3 4 | mpbiri | |- ( S = RR -> S C_ CC ) |
| 6 | eqimss | |- ( S = CC -> S C_ CC ) |
|
| 7 | 5 6 | pm3.2i | |- ( ( S = RR -> S C_ CC ) /\ ( S = CC -> S C_ CC ) ) |
| 8 | elpri | |- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
|
| 9 | 1 8 | syl | |- ( ph -> ( S = RR \/ S = CC ) ) |
| 10 | pm3.44 | |- ( ( ( S = RR -> S C_ CC ) /\ ( S = CC -> S C_ CC ) ) -> ( ( S = RR \/ S = CC ) -> S C_ CC ) ) |
|
| 11 | 7 9 10 | mpsyl | |- ( ph -> S C_ CC ) |
| 12 | 11 | sselda | |- ( ( ph /\ x e. S ) -> x e. CC ) |
| 13 | 1red | |- ( ( ph /\ x e. S ) -> 1 e. RR ) |
|
| 14 | 1 | dvmptid | |- ( ph -> ( S _D ( x e. S |-> x ) ) = ( x e. S |-> 1 ) ) |
| 15 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 16 | 15 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 17 | 16 | a1i | |- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 18 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
|
| 19 | 17 11 18 | syl2anc | |- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
| 20 | toponss | |- ( ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) /\ A e. ( ( TopOpen ` CCfld ) |`t S ) ) -> A C_ S ) |
|
| 21 | 19 2 20 | syl2anc | |- ( ph -> A C_ S ) |
| 22 | eqid | |- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
|
| 23 | 1 12 13 14 21 22 15 2 | dvmptres | |- ( ph -> ( S _D ( x e. A |-> x ) ) = ( x e. A |-> 1 ) ) |