This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccssioo2 | |- ( ( C e. ( A (,) B ) /\ D e. ( A (,) B ) ) -> ( C [,] D ) C_ ( A (,) B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | |- ( C e. ( A (,) B ) -> ( A (,) B ) =/= (/) ) |
|
| 2 | 1 | adantr | |- ( ( C e. ( A (,) B ) /\ D e. ( A (,) B ) ) -> ( A (,) B ) =/= (/) ) |
| 3 | ndmioo | |- ( -. ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = (/) ) |
|
| 4 | 3 | necon1ai | |- ( ( A (,) B ) =/= (/) -> ( A e. RR* /\ B e. RR* ) ) |
| 5 | 2 4 | syl | |- ( ( C e. ( A (,) B ) /\ D e. ( A (,) B ) ) -> ( A e. RR* /\ B e. RR* ) ) |
| 6 | eliooord | |- ( C e. ( A (,) B ) -> ( A < C /\ C < B ) ) |
|
| 7 | 6 | adantr | |- ( ( C e. ( A (,) B ) /\ D e. ( A (,) B ) ) -> ( A < C /\ C < B ) ) |
| 8 | 7 | simpld | |- ( ( C e. ( A (,) B ) /\ D e. ( A (,) B ) ) -> A < C ) |
| 9 | eliooord | |- ( D e. ( A (,) B ) -> ( A < D /\ D < B ) ) |
|
| 10 | 9 | adantl | |- ( ( C e. ( A (,) B ) /\ D e. ( A (,) B ) ) -> ( A < D /\ D < B ) ) |
| 11 | 10 | simprd | |- ( ( C e. ( A (,) B ) /\ D e. ( A (,) B ) ) -> D < B ) |
| 12 | iccssioo | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < C /\ D < B ) ) -> ( C [,] D ) C_ ( A (,) B ) ) |
|
| 13 | 5 8 11 12 | syl12anc | |- ( ( C e. ( A (,) B ) /\ D e. ( A (,) B ) ) -> ( C [,] D ) C_ ( A (,) B ) ) |