This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dsmmval.b | |- B = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } |
|
| Assertion | dsmmval | |- ( R e. V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmval.b | |- B = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } |
|
| 2 | elex | |- ( R e. V -> R e. _V ) |
|
| 3 | oveq12 | |- ( ( s = S /\ r = R ) -> ( s Xs_ r ) = ( S Xs_ R ) ) |
|
| 4 | eqid | |- ( s Xs_ r ) = ( s Xs_ r ) |
|
| 5 | vex | |- s e. _V |
|
| 6 | 5 | a1i | |- ( ( s = S /\ r = R ) -> s e. _V ) |
| 7 | vex | |- r e. _V |
|
| 8 | 7 | a1i | |- ( ( s = S /\ r = R ) -> r e. _V ) |
| 9 | eqid | |- ( Base ` ( s Xs_ r ) ) = ( Base ` ( s Xs_ r ) ) |
|
| 10 | eqidd | |- ( ( s = S /\ r = R ) -> dom r = dom r ) |
|
| 11 | 4 6 8 9 10 | prdsbas | |- ( ( s = S /\ r = R ) -> ( Base ` ( s Xs_ r ) ) = X_ x e. dom r ( Base ` ( r ` x ) ) ) |
| 12 | 3 | fveq2d | |- ( ( s = S /\ r = R ) -> ( Base ` ( s Xs_ r ) ) = ( Base ` ( S Xs_ R ) ) ) |
| 13 | 11 12 | eqtr3d | |- ( ( s = S /\ r = R ) -> X_ x e. dom r ( Base ` ( r ` x ) ) = ( Base ` ( S Xs_ R ) ) ) |
| 14 | simpr | |- ( ( s = S /\ r = R ) -> r = R ) |
|
| 15 | 14 | dmeqd | |- ( ( s = S /\ r = R ) -> dom r = dom R ) |
| 16 | 14 | fveq1d | |- ( ( s = S /\ r = R ) -> ( r ` x ) = ( R ` x ) ) |
| 17 | 16 | fveq2d | |- ( ( s = S /\ r = R ) -> ( 0g ` ( r ` x ) ) = ( 0g ` ( R ` x ) ) ) |
| 18 | 17 | neeq2d | |- ( ( s = S /\ r = R ) -> ( ( f ` x ) =/= ( 0g ` ( r ` x ) ) <-> ( f ` x ) =/= ( 0g ` ( R ` x ) ) ) ) |
| 19 | 15 18 | rabeqbidv | |- ( ( s = S /\ r = R ) -> { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } = { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } ) |
| 20 | 19 | eleq1d | |- ( ( s = S /\ r = R ) -> ( { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin <-> { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin ) ) |
| 21 | 13 20 | rabeqbidv | |- ( ( s = S /\ r = R ) -> { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) |
| 22 | 21 1 | eqtr4di | |- ( ( s = S /\ r = R ) -> { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } = B ) |
| 23 | 3 22 | oveq12d | |- ( ( s = S /\ r = R ) -> ( ( s Xs_ r ) |`s { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } ) = ( ( S Xs_ R ) |`s B ) ) |
| 24 | df-dsmm | |- (+)m = ( s e. _V , r e. _V |-> ( ( s Xs_ r ) |`s { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } ) ) |
|
| 25 | ovex | |- ( ( S Xs_ R ) |`s B ) e. _V |
|
| 26 | 23 24 25 | ovmpoa | |- ( ( S e. _V /\ R e. _V ) -> ( S (+)m R ) = ( ( S Xs_ R ) |`s B ) ) |
| 27 | reldmdsmm | |- Rel dom (+)m |
|
| 28 | 27 | ovprc1 | |- ( -. S e. _V -> ( S (+)m R ) = (/) ) |
| 29 | ress0 | |- ( (/) |`s B ) = (/) |
|
| 30 | 28 29 | eqtr4di | |- ( -. S e. _V -> ( S (+)m R ) = ( (/) |`s B ) ) |
| 31 | reldmprds | |- Rel dom Xs_ |
|
| 32 | 31 | ovprc1 | |- ( -. S e. _V -> ( S Xs_ R ) = (/) ) |
| 33 | 32 | oveq1d | |- ( -. S e. _V -> ( ( S Xs_ R ) |`s B ) = ( (/) |`s B ) ) |
| 34 | 30 33 | eqtr4d | |- ( -. S e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s B ) ) |
| 35 | 34 | adantr | |- ( ( -. S e. _V /\ R e. _V ) -> ( S (+)m R ) = ( ( S Xs_ R ) |`s B ) ) |
| 36 | 26 35 | pm2.61ian | |- ( R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s B ) ) |
| 37 | 2 36 | syl | |- ( R e. V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s B ) ) |