This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct sum of a family of Abelian groups or left modules is the induced group structure on finite linear combinations of elements, here represented as functions with finite support. (Contributed by Stefan O'Rear, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dsmm | |- (+)m = ( s e. _V , r e. _V |-> ( ( s Xs_ r ) |`s { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdsmm | |- (+)m |
|
| 1 | vs | |- s |
|
| 2 | cvv | |- _V |
|
| 3 | vr | |- r |
|
| 4 | 1 | cv | |- s |
| 5 | cprds | |- Xs_ |
|
| 6 | 3 | cv | |- r |
| 7 | 4 6 5 | co | |- ( s Xs_ r ) |
| 8 | cress | |- |`s |
|
| 9 | vf | |- f |
|
| 10 | vx | |- x |
|
| 11 | 6 | cdm | |- dom r |
| 12 | cbs | |- Base |
|
| 13 | 10 | cv | |- x |
| 14 | 13 6 | cfv | |- ( r ` x ) |
| 15 | 14 12 | cfv | |- ( Base ` ( r ` x ) ) |
| 16 | 10 11 15 | cixp | |- X_ x e. dom r ( Base ` ( r ` x ) ) |
| 17 | 9 | cv | |- f |
| 18 | 13 17 | cfv | |- ( f ` x ) |
| 19 | c0g | |- 0g |
|
| 20 | 14 19 | cfv | |- ( 0g ` ( r ` x ) ) |
| 21 | 18 20 | wne | |- ( f ` x ) =/= ( 0g ` ( r ` x ) ) |
| 22 | 21 10 11 | crab | |- { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } |
| 23 | cfn | |- Fin |
|
| 24 | 22 23 | wcel | |- { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin |
| 25 | 24 9 16 | crab | |- { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } |
| 26 | 7 25 8 | co | |- ( ( s Xs_ r ) |`s { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } ) |
| 27 | 1 3 2 2 26 | cmpo | |- ( s e. _V , r e. _V |-> ( ( s Xs_ r ) |`s { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } ) ) |
| 28 | 0 27 | wceq | |- (+)m = ( s e. _V , r e. _V |-> ( ( s Xs_ r ) |`s { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } ) ) |