This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty set that is a subset of its union is infinite. This version is proved from ax-cc . See dominfac for a version proved from ax-ac . The axiom of Regularity is used for this proof, via inf3lem6 , and its use is necessary: otherwise the set A = { A } or A = { (/) , A } (where the second example even has nonempty well-founded part) provides a counterexample. (Contributed by Mario Carneiro, 9-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dominf.1 | |- A e. _V |
|
| Assertion | dominf | |- ( ( A =/= (/) /\ A C_ U. A ) -> _om ~<_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dominf.1 | |- A e. _V |
|
| 2 | neeq1 | |- ( x = A -> ( x =/= (/) <-> A =/= (/) ) ) |
|
| 3 | id | |- ( x = A -> x = A ) |
|
| 4 | unieq | |- ( x = A -> U. x = U. A ) |
|
| 5 | 3 4 | sseq12d | |- ( x = A -> ( x C_ U. x <-> A C_ U. A ) ) |
| 6 | 2 5 | anbi12d | |- ( x = A -> ( ( x =/= (/) /\ x C_ U. x ) <-> ( A =/= (/) /\ A C_ U. A ) ) ) |
| 7 | breq2 | |- ( x = A -> ( _om ~<_ x <-> _om ~<_ A ) ) |
|
| 8 | 6 7 | imbi12d | |- ( x = A -> ( ( ( x =/= (/) /\ x C_ U. x ) -> _om ~<_ x ) <-> ( ( A =/= (/) /\ A C_ U. A ) -> _om ~<_ A ) ) ) |
| 9 | eqid | |- ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| 10 | eqid | |- ( rec ( ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) , (/) ) |` _om ) = ( rec ( ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) , (/) ) |` _om ) |
|
| 11 | 9 10 1 1 | inf3lem6 | |- ( ( x =/= (/) /\ x C_ U. x ) -> ( rec ( ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) , (/) ) |` _om ) : _om -1-1-> ~P x ) |
| 12 | vpwex | |- ~P x e. _V |
|
| 13 | 12 | f1dom | |- ( ( rec ( ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) , (/) ) |` _om ) : _om -1-1-> ~P x -> _om ~<_ ~P x ) |
| 14 | pwfi | |- ( x e. Fin <-> ~P x e. Fin ) |
|
| 15 | 14 | biimpi | |- ( x e. Fin -> ~P x e. Fin ) |
| 16 | isfinite | |- ( x e. Fin <-> x ~< _om ) |
|
| 17 | isfinite | |- ( ~P x e. Fin <-> ~P x ~< _om ) |
|
| 18 | 15 16 17 | 3imtr3i | |- ( x ~< _om -> ~P x ~< _om ) |
| 19 | 18 | con3i | |- ( -. ~P x ~< _om -> -. x ~< _om ) |
| 20 | 12 | domtriom | |- ( _om ~<_ ~P x <-> -. ~P x ~< _om ) |
| 21 | vex | |- x e. _V |
|
| 22 | 21 | domtriom | |- ( _om ~<_ x <-> -. x ~< _om ) |
| 23 | 19 20 22 | 3imtr4i | |- ( _om ~<_ ~P x -> _om ~<_ x ) |
| 24 | 11 13 23 | 3syl | |- ( ( x =/= (/) /\ x C_ U. x ) -> _om ~<_ x ) |
| 25 | 1 8 24 | vtocl | |- ( ( A =/= (/) /\ A C_ U. A ) -> _om ~<_ A ) |