This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of dmcosseq as of 23-Jun-2025. (Contributed by NM, 28-May-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmcosseqOLDOLD | |- ( ran B C_ dom A -> dom ( A o. B ) = dom B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss | |- dom ( A o. B ) C_ dom B |
|
| 2 | 1 | a1i | |- ( ran B C_ dom A -> dom ( A o. B ) C_ dom B ) |
| 3 | ssel | |- ( ran B C_ dom A -> ( y e. ran B -> y e. dom A ) ) |
|
| 4 | vex | |- y e. _V |
|
| 5 | 4 | elrn | |- ( y e. ran B <-> E. x x B y ) |
| 6 | 4 | eldm | |- ( y e. dom A <-> E. z y A z ) |
| 7 | 5 6 | imbi12i | |- ( ( y e. ran B -> y e. dom A ) <-> ( E. x x B y -> E. z y A z ) ) |
| 8 | 19.8a | |- ( x B y -> E. x x B y ) |
|
| 9 | 8 | imim1i | |- ( ( E. x x B y -> E. z y A z ) -> ( x B y -> E. z y A z ) ) |
| 10 | pm3.2 | |- ( x B y -> ( y A z -> ( x B y /\ y A z ) ) ) |
|
| 11 | 10 | eximdv | |- ( x B y -> ( E. z y A z -> E. z ( x B y /\ y A z ) ) ) |
| 12 | 9 11 | sylcom | |- ( ( E. x x B y -> E. z y A z ) -> ( x B y -> E. z ( x B y /\ y A z ) ) ) |
| 13 | 7 12 | sylbi | |- ( ( y e. ran B -> y e. dom A ) -> ( x B y -> E. z ( x B y /\ y A z ) ) ) |
| 14 | 3 13 | syl | |- ( ran B C_ dom A -> ( x B y -> E. z ( x B y /\ y A z ) ) ) |
| 15 | 14 | eximdv | |- ( ran B C_ dom A -> ( E. y x B y -> E. y E. z ( x B y /\ y A z ) ) ) |
| 16 | excom | |- ( E. z E. y ( x B y /\ y A z ) <-> E. y E. z ( x B y /\ y A z ) ) |
|
| 17 | 15 16 | imbitrrdi | |- ( ran B C_ dom A -> ( E. y x B y -> E. z E. y ( x B y /\ y A z ) ) ) |
| 18 | vex | |- x e. _V |
|
| 19 | vex | |- z e. _V |
|
| 20 | 18 19 | opelco | |- ( <. x , z >. e. ( A o. B ) <-> E. y ( x B y /\ y A z ) ) |
| 21 | 20 | exbii | |- ( E. z <. x , z >. e. ( A o. B ) <-> E. z E. y ( x B y /\ y A z ) ) |
| 22 | 17 21 | imbitrrdi | |- ( ran B C_ dom A -> ( E. y x B y -> E. z <. x , z >. e. ( A o. B ) ) ) |
| 23 | 18 | eldm | |- ( x e. dom B <-> E. y x B y ) |
| 24 | 18 | eldm2 | |- ( x e. dom ( A o. B ) <-> E. z <. x , z >. e. ( A o. B ) ) |
| 25 | 22 23 24 | 3imtr4g | |- ( ran B C_ dom A -> ( x e. dom B -> x e. dom ( A o. B ) ) ) |
| 26 | 25 | ssrdv | |- ( ran B C_ dom A -> dom B C_ dom ( A o. B ) ) |
| 27 | 2 26 | eqssd | |- ( ran B C_ dom A -> dom ( A o. B ) = dom B ) |