This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cross-multiply in an equality of ratios. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divmuleq | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) = ( B / D ) <-> ( A x. D ) = ( B x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcl | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) e. CC ) |
|
| 2 | 1 | 3expb | |- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) e. CC ) |
| 3 | 2 | ad2ant2r | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( A / C ) e. CC ) |
| 4 | divcl | |- ( ( B e. CC /\ D e. CC /\ D =/= 0 ) -> ( B / D ) e. CC ) |
|
| 5 | 4 | 3expb | |- ( ( B e. CC /\ ( D e. CC /\ D =/= 0 ) ) -> ( B / D ) e. CC ) |
| 6 | 5 | ad2ant2l | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( B / D ) e. CC ) |
| 7 | mulcl | |- ( ( C e. CC /\ D e. CC ) -> ( C x. D ) e. CC ) |
|
| 8 | 7 | ad2ant2r | |- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C x. D ) e. CC ) |
| 9 | mulne0 | |- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C x. D ) =/= 0 ) |
|
| 10 | 8 9 | jca | |- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( C x. D ) e. CC /\ ( C x. D ) =/= 0 ) ) |
| 11 | 10 | adantl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( C x. D ) e. CC /\ ( C x. D ) =/= 0 ) ) |
| 12 | mulcan2 | |- ( ( ( A / C ) e. CC /\ ( B / D ) e. CC /\ ( ( C x. D ) e. CC /\ ( C x. D ) =/= 0 ) ) -> ( ( ( A / C ) x. ( C x. D ) ) = ( ( B / D ) x. ( C x. D ) ) <-> ( A / C ) = ( B / D ) ) ) |
|
| 13 | 3 6 11 12 | syl3anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( A / C ) x. ( C x. D ) ) = ( ( B / D ) x. ( C x. D ) ) <-> ( A / C ) = ( B / D ) ) ) |
| 14 | simprll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> C e. CC ) |
|
| 15 | simprrl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> D e. CC ) |
|
| 16 | 3 14 15 | mulassd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( A / C ) x. C ) x. D ) = ( ( A / C ) x. ( C x. D ) ) ) |
| 17 | divcan1 | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( ( A / C ) x. C ) = A ) |
|
| 18 | 17 | 3expb | |- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) x. C ) = A ) |
| 19 | 18 | ad2ant2r | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. C ) = A ) |
| 20 | 19 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( A / C ) x. C ) x. D ) = ( A x. D ) ) |
| 21 | 16 20 | eqtr3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( C x. D ) ) = ( A x. D ) ) |
| 22 | 14 15 | mulcomd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( C x. D ) = ( D x. C ) ) |
| 23 | 22 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( B / D ) x. ( C x. D ) ) = ( ( B / D ) x. ( D x. C ) ) ) |
| 24 | 6 15 14 | mulassd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( B / D ) x. D ) x. C ) = ( ( B / D ) x. ( D x. C ) ) ) |
| 25 | divcan1 | |- ( ( B e. CC /\ D e. CC /\ D =/= 0 ) -> ( ( B / D ) x. D ) = B ) |
|
| 26 | 25 | 3expb | |- ( ( B e. CC /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( B / D ) x. D ) = B ) |
| 27 | 26 | ad2ant2l | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( B / D ) x. D ) = B ) |
| 28 | 27 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( B / D ) x. D ) x. C ) = ( B x. C ) ) |
| 29 | 23 24 28 | 3eqtr2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( B / D ) x. ( C x. D ) ) = ( B x. C ) ) |
| 30 | 21 29 | eqeq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( A / C ) x. ( C x. D ) ) = ( ( B / D ) x. ( C x. D ) ) <-> ( A x. D ) = ( B x. C ) ) ) |
| 31 | 13 30 | bitr3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) = ( B / D ) <-> ( A x. D ) = ( B x. C ) ) ) |