This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cross-multiply in an equality of ratios. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divmuleq | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐷 ) ↔ ( 𝐴 · 𝐷 ) = ( 𝐵 · 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) | |
| 2 | 1 | 3expb | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
| 3 | 2 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
| 4 | divcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) → ( 𝐵 / 𝐷 ) ∈ ℂ ) | |
| 5 | 4 | 3expb | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐵 / 𝐷 ) ∈ ℂ ) |
| 6 | 5 | ad2ant2l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( 𝐵 / 𝐷 ) ∈ ℂ ) |
| 7 | mulcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 · 𝐷 ) ∈ ℂ ) | |
| 8 | 7 | ad2ant2r | ⊢ ( ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐶 · 𝐷 ) ∈ ℂ ) |
| 9 | mulne0 | ⊢ ( ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐶 · 𝐷 ) ≠ 0 ) | |
| 10 | 8 9 | jca | ⊢ ( ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐶 · 𝐷 ) ∈ ℂ ∧ ( 𝐶 · 𝐷 ) ≠ 0 ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐶 · 𝐷 ) ∈ ℂ ∧ ( 𝐶 · 𝐷 ) ≠ 0 ) ) |
| 12 | mulcan2 | ⊢ ( ( ( 𝐴 / 𝐶 ) ∈ ℂ ∧ ( 𝐵 / 𝐷 ) ∈ ℂ ∧ ( ( 𝐶 · 𝐷 ) ∈ ℂ ∧ ( 𝐶 · 𝐷 ) ≠ 0 ) ) → ( ( ( 𝐴 / 𝐶 ) · ( 𝐶 · 𝐷 ) ) = ( ( 𝐵 / 𝐷 ) · ( 𝐶 · 𝐷 ) ) ↔ ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐷 ) ) ) | |
| 13 | 3 6 11 12 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( ( 𝐴 / 𝐶 ) · ( 𝐶 · 𝐷 ) ) = ( ( 𝐵 / 𝐷 ) · ( 𝐶 · 𝐷 ) ) ↔ ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐷 ) ) ) |
| 14 | simprll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → 𝐶 ∈ ℂ ) | |
| 15 | simprrl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → 𝐷 ∈ ℂ ) | |
| 16 | 3 14 15 | mulassd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( ( 𝐴 / 𝐶 ) · 𝐶 ) · 𝐷 ) = ( ( 𝐴 / 𝐶 ) · ( 𝐶 · 𝐷 ) ) ) |
| 17 | divcan1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( ( 𝐴 / 𝐶 ) · 𝐶 ) = 𝐴 ) | |
| 18 | 17 | 3expb | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) · 𝐶 ) = 𝐴 ) |
| 19 | 18 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐶 ) · 𝐶 ) = 𝐴 ) |
| 20 | 19 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( ( 𝐴 / 𝐶 ) · 𝐶 ) · 𝐷 ) = ( 𝐴 · 𝐷 ) ) |
| 21 | 16 20 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐶 ) · ( 𝐶 · 𝐷 ) ) = ( 𝐴 · 𝐷 ) ) |
| 22 | 14 15 | mulcomd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( 𝐶 · 𝐷 ) = ( 𝐷 · 𝐶 ) ) |
| 23 | 22 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐵 / 𝐷 ) · ( 𝐶 · 𝐷 ) ) = ( ( 𝐵 / 𝐷 ) · ( 𝐷 · 𝐶 ) ) ) |
| 24 | 6 15 14 | mulassd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( ( 𝐵 / 𝐷 ) · 𝐷 ) · 𝐶 ) = ( ( 𝐵 / 𝐷 ) · ( 𝐷 · 𝐶 ) ) ) |
| 25 | divcan1 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) → ( ( 𝐵 / 𝐷 ) · 𝐷 ) = 𝐵 ) | |
| 26 | 25 | 3expb | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐵 / 𝐷 ) · 𝐷 ) = 𝐵 ) |
| 27 | 26 | ad2ant2l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐵 / 𝐷 ) · 𝐷 ) = 𝐵 ) |
| 28 | 27 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( ( 𝐵 / 𝐷 ) · 𝐷 ) · 𝐶 ) = ( 𝐵 · 𝐶 ) ) |
| 29 | 23 24 28 | 3eqtr2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐵 / 𝐷 ) · ( 𝐶 · 𝐷 ) ) = ( 𝐵 · 𝐶 ) ) |
| 30 | 21 29 | eqeq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( ( 𝐴 / 𝐶 ) · ( 𝐶 · 𝐷 ) ) = ( ( 𝐵 / 𝐷 ) · ( 𝐶 · 𝐷 ) ) ↔ ( 𝐴 · 𝐷 ) = ( 𝐵 · 𝐶 ) ) ) |
| 31 | 13 30 | bitr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐷 ) ↔ ( 𝐴 · 𝐷 ) = ( 𝐵 · 𝐶 ) ) ) |