This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for a ratio to be a member of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divelunit | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( A / B ) e. ( 0 [,] 1 ) <-> A <_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc01 | |- ( ( A / B ) e. ( 0 [,] 1 ) <-> ( ( A / B ) e. RR /\ 0 <_ ( A / B ) /\ ( A / B ) <_ 1 ) ) |
|
| 2 | df-3an | |- ( ( ( A / B ) e. RR /\ 0 <_ ( A / B ) /\ ( A / B ) <_ 1 ) <-> ( ( ( A / B ) e. RR /\ 0 <_ ( A / B ) ) /\ ( A / B ) <_ 1 ) ) |
|
| 3 | 1 2 | bitri | |- ( ( A / B ) e. ( 0 [,] 1 ) <-> ( ( ( A / B ) e. RR /\ 0 <_ ( A / B ) ) /\ ( A / B ) <_ 1 ) ) |
| 4 | 1re | |- 1 e. RR |
|
| 5 | ledivmul | |- ( ( A e. RR /\ 1 e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( A / B ) <_ 1 <-> A <_ ( B x. 1 ) ) ) |
|
| 6 | 4 5 | mp3an2 | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( A / B ) <_ 1 <-> A <_ ( B x. 1 ) ) ) |
| 7 | 6 | adantlr | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( A / B ) <_ 1 <-> A <_ ( B x. 1 ) ) ) |
| 8 | simpll | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> A e. RR ) |
|
| 9 | simprl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> B e. RR ) |
|
| 10 | gt0ne0 | |- ( ( B e. RR /\ 0 < B ) -> B =/= 0 ) |
|
| 11 | 10 | adantl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> B =/= 0 ) |
| 12 | 8 9 11 | redivcld | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A / B ) e. RR ) |
| 13 | divge0 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 <_ ( A / B ) ) |
|
| 14 | 12 13 | jca | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( A / B ) e. RR /\ 0 <_ ( A / B ) ) ) |
| 15 | 14 | biantrurd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( A / B ) <_ 1 <-> ( ( ( A / B ) e. RR /\ 0 <_ ( A / B ) ) /\ ( A / B ) <_ 1 ) ) ) |
| 16 | recn | |- ( B e. RR -> B e. CC ) |
|
| 17 | 16 | ad2antrl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> B e. CC ) |
| 18 | 17 | mulridd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> ( B x. 1 ) = B ) |
| 19 | 18 | breq2d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A <_ ( B x. 1 ) <-> A <_ B ) ) |
| 20 | 7 15 19 | 3bitr3d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( ( ( A / B ) e. RR /\ 0 <_ ( A / B ) ) /\ ( A / B ) <_ 1 ) <-> A <_ B ) ) |
| 21 | 3 20 | bitrid | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( A / B ) e. ( 0 [,] 1 ) <-> A <_ B ) ) |