This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the directed integral. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ditgeq2 | |- ( A = B -> S_ [ C -> A ] D _d x = S_ [ C -> B ] D _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | |- ( A = B -> ( C <_ A <-> C <_ B ) ) |
|
| 2 | oveq2 | |- ( A = B -> ( C (,) A ) = ( C (,) B ) ) |
|
| 3 | itgeq1 | |- ( ( C (,) A ) = ( C (,) B ) -> S. ( C (,) A ) D _d x = S. ( C (,) B ) D _d x ) |
|
| 4 | 2 3 | syl | |- ( A = B -> S. ( C (,) A ) D _d x = S. ( C (,) B ) D _d x ) |
| 5 | oveq1 | |- ( A = B -> ( A (,) C ) = ( B (,) C ) ) |
|
| 6 | itgeq1 | |- ( ( A (,) C ) = ( B (,) C ) -> S. ( A (,) C ) D _d x = S. ( B (,) C ) D _d x ) |
|
| 7 | 5 6 | syl | |- ( A = B -> S. ( A (,) C ) D _d x = S. ( B (,) C ) D _d x ) |
| 8 | 7 | negeqd | |- ( A = B -> -u S. ( A (,) C ) D _d x = -u S. ( B (,) C ) D _d x ) |
| 9 | 1 4 8 | ifbieq12d | |- ( A = B -> if ( C <_ A , S. ( C (,) A ) D _d x , -u S. ( A (,) C ) D _d x ) = if ( C <_ B , S. ( C (,) B ) D _d x , -u S. ( B (,) C ) D _d x ) ) |
| 10 | df-ditg | |- S_ [ C -> A ] D _d x = if ( C <_ A , S. ( C (,) A ) D _d x , -u S. ( A (,) C ) D _d x ) |
|
| 11 | df-ditg | |- S_ [ C -> B ] D _d x = if ( C <_ B , S. ( C (,) B ) D _d x , -u S. ( B (,) C ) D _d x ) |
|
| 12 | 9 10 11 | 3eqtr4g | |- ( A = B -> S_ [ C -> A ] D _d x = S_ [ C -> B ] D _d x ) |