This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation of subclass expressed in terms of proper subclass and union. (Contributed by NM, 15-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nsspssun | |- ( -. A C_ B <-> B C. ( A u. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 | |- B C_ ( A u. B ) |
|
| 2 | 1 | biantrur | |- ( -. ( A u. B ) C_ B <-> ( B C_ ( A u. B ) /\ -. ( A u. B ) C_ B ) ) |
| 3 | ssid | |- B C_ B |
|
| 4 | 3 | biantru | |- ( A C_ B <-> ( A C_ B /\ B C_ B ) ) |
| 5 | unss | |- ( ( A C_ B /\ B C_ B ) <-> ( A u. B ) C_ B ) |
|
| 6 | 4 5 | bitri | |- ( A C_ B <-> ( A u. B ) C_ B ) |
| 7 | 2 6 | xchnxbir | |- ( -. A C_ B <-> ( B C_ ( A u. B ) /\ -. ( A u. B ) C_ B ) ) |
| 8 | dfpss3 | |- ( B C. ( A u. B ) <-> ( B C_ ( A u. B ) /\ -. ( A u. B ) C_ B ) ) |
|
| 9 | 7 8 | bitr4i | |- ( -. A C_ B <-> B C. ( A u. B ) ) |